当前位置: 首页>>代码示例>>Python>>正文


Python sparse.csr_matrix方法代码示例

本文整理汇总了Python中scipy.sparse.csr_matrix方法的典型用法代码示例。如果您正苦于以下问题:Python sparse.csr_matrix方法的具体用法?Python sparse.csr_matrix怎么用?Python sparse.csr_matrix使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.sparse的用法示例。


在下文中一共展示了sparse.csr_matrix方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _convert_dict_to_sparse_matrix

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def _convert_dict_to_sparse_matrix(self, feature_rows):
        if len(feature_rows) == 0:
            raise Exception('ERROR: something went wrong, empty features.')
        data, row, col = [], [], []
        for i, feature_row in enumerate(feature_rows):
            if len(feature_row) == 0:
                # case of empty feature set for a specific instance
                row.append(i)
                col.append(0)
                data.append(0)
            else:
                for feature in feature_row:
                    row.append(i)
                    col.append(feature)
                    data.append(feature_row[feature])
        shape = (max(row) + 1, self.feature_size)
        data_matrix = csr_matrix((data, (row, col)),
                                 shape=shape, dtype=np.float64)
        return data_matrix 
开发者ID:fabriziocosta,项目名称:EDeN,代码行数:21,代码来源:graph.py

示例2: __init__

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def __init__(self,node_i,node_j,A,rho,dof,name=None,mass='conc',tol=1e-6):
        super(Line,self).__init__(1,dof,name)
        self._nodes=[node_i,node_j]
        #Initialize local CSys
        o = [ node_i.x, node_i.y, node_i.z ]
        pt1 = [ node_j.x, node_j.y, node_j.z ]
        pt2 = [ node_i.x, node_i.y, node_i.z ]
        if abs(node_i.x - node_j.x) < tol and abs(node_i.y - node_j.y) < tol:
            pt2[0] += 1
        else:
            pt2[2] += 1
        self._local_csys = Cartisian(o, pt1, pt2)

        T=np.zeros((12,12))
        V=self._local_csys.transform_matrix
        T[:3,:3] =T[3:6,3:6]=T[6:9,6:9]=T[9:,9:]= V
        self._T=spr.csr_matrix(T)

        self._length=((node_i.x - node_j.x)**2 + (node_i.y - node_j.y)**2 + (node_i.z - node_j.z)**2)**0.5
        self._mass=rho*A*self.length 
开发者ID:zhuoju36,项目名称:StructEngPy,代码行数:22,代码来源:element.py

示例3: jacobian

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def jacobian(self, params, into=None):
        params = flattest(params)
        n = len(params)
        ii = np.arange(n)
        (rs,cs,zs) = ([],[],[])
        for ((mn,mx), f) in self.pieces_with_default:
            if len(ii) == 0: break
            k = np.where((params >= mn) & (params <= mx))[0]
            if len(k) == 0: continue
            kk = ii[k]
            j = f.jacobian(params[k])
            if j.shape[0] == 1 and j.shape[1] > 1: j = repmat(j, j.shape[1], 1)
            (rj,cj,vj) = sps.find(j)
            rs.append(kk[rj])
            cs.append(kk[cj])
            zs.append(vj)
            ii = np.delete(ii, k)
            params = np.delete(params, k)
        (rs,cs,zs) = [np.concatenate(us) if len(us) > 0 else [] for us in (rs,cs,zs)]
        dz = sps.csr_matrix((zs, (rs,cs)), shape=(n,n))
        return safe_into(into, dz) 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:23,代码来源:core.py

示例4: asscipy

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def asscipy(self):
        """Returns a ``scipy.sparse.csr.csr_matrix`` object with value copied from this array

        Examples
        --------
        >>> x = mx.nd.sparse.zeros('csr', (2,3))
        >>> y = x.asscipy()
        >>> type(y)
        <type 'scipy.sparse.csr.csr_matrix'>
        >>> y
        <2x3 sparse matrix of type '<type 'numpy.float32'>'
        with 0 stored elements in Compressed Sparse Row format>
        """
        data = self.data.asnumpy()
        indices = self.indices.asnumpy()
        indptr = self.indptr.asnumpy()
        if not spsp:
            raise ImportError("scipy is not available. \
                               Please check if the scipy python bindings are installed.")
        return spsp.csr_matrix((data, indices, indptr), shape=self.shape, dtype=self.dtype)

# pylint: disable=abstract-method 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:24,代码来源:sparse.py

示例5: test_create_sparse_nd_from_dense

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def test_create_sparse_nd_from_dense():
    def check_create_from_dns(shape, f, dense_arr, dtype, default_dtype, ctx):
        arr = f(dense_arr, dtype=dtype, ctx=ctx)
        assert(same(arr.asnumpy(), np.ones(shape)))
        assert(arr.dtype == dtype)
        assert(arr.context == ctx)
        # verify the default dtype inferred from dense arr
        arr2 = f(dense_arr)
        assert(arr2.dtype == default_dtype)
        assert(arr2.context == Context.default_ctx)
    shape = rand_shape_2d()
    dtype = np.int32
    src_dtype = np.float64
    ctx = mx.cpu(1)
    dense_arrs = [mx.nd.ones(shape, dtype=src_dtype), np.ones(shape, dtype=src_dtype), \
                  np.ones(shape, dtype=src_dtype).tolist()]
    for f in [mx.nd.sparse.csr_matrix, mx.nd.sparse.row_sparse_array]:
        for dense_arr in dense_arrs:
            default_dtype = dense_arr.dtype if isinstance(dense_arr, (NDArray, np.ndarray)) \
                            else np.float32
            check_create_from_dns(shape, f, dense_arr, dtype, default_dtype, ctx) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:23,代码来源:test_sparse_ndarray.py

示例6: main

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def main():
    print('create y...')
    y = np.random.randint(2, size=N_OBS)
    print('create X...')
    row = np.random.randint(N_OBS, size=N_VALUE)
    col = np.random.randint(N_FEATURE, size=N_VALUE)
    data = np.ones(N_VALUE)
    X = sparse.csr_matrix((data, (row, col)), dtype=np.int8)

    print('train...')
    profiler = cProfile.Profile(subcalls=True, builtins=True, timeunit=0.001,)
    clf = FTRL(interaction=False)
    profiler.enable()
    clf.fit(X, y)
    profiler.disable()
    profiler.print_stats()

    p = clf.predict(X)
    print('AUC: {:.4f}'.format(auc(y, p)))

    assert auc(y, p) > .5 
开发者ID:jeongyoonlee,项目名称:Kaggler,代码行数:23,代码来源:test_ftrl.py

示例7: load_mtx

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def load_mtx(dname):
    with open(dname + '/matrix.mtx', 'r') as f:
        while True:
            header = f.readline()
            if not header.startswith('%'):
                break
        header = header.rstrip().split()
        n_genes, n_cells = int(header[0]), int(header[1])

        data, i, j = [], [], []
        for line in f:
            fields = line.rstrip().split()
            data.append(float(fields[2]))
            i.append(int(fields[1])-1)
            j.append(int(fields[0])-1)
        X = csr_matrix((data, (i, j)), shape=(n_cells, n_genes))

    genes = []
    with open(dname + '/genes.tsv', 'r') as f:
        for line in f:
            fields = line.rstrip().split()
            genes.append(fields[1])
    assert(len(genes) == n_genes)

    return X, np.array(genes) 
开发者ID:brianhie,项目名称:scanorama,代码行数:27,代码来源:process.py

示例8: load_names

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def load_names(data_names, norm=True, log1p=False, verbose=True):
    # Load datasets.
    datasets = []
    genes_list = []
    n_cells = 0
    for name in data_names:
        X_i, genes_i = load_data(name)
        if norm:
            X_i = normalize(X_i, axis=1)
        if log1p:
            X_i = np.log1p(X_i)
        X_i = csr_matrix(X_i)
            
        datasets.append(X_i)
        genes_list.append(genes_i)
        n_cells += X_i.shape[0]
        if verbose:
            print('Loaded {} with {} genes and {} cells'.
                  format(name, X_i.shape[1], X_i.shape[0]))
    if verbose:
        print('Found {} cells among all datasets'
              .format(n_cells))

    return datasets, genes_list, n_cells 
开发者ID:brianhie,项目名称:scanorama,代码行数:26,代码来源:process.py

示例9: comp_aos_csr

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def comp_aos_csr(self, coords, tol=1e-8, ram=160e6):
    """ 
          Compute the atomic orbitals for a given set of (Cartesian) coordinates.
        The sparse format CSR is used for output and the computation is organized block-wise.
        Thence, larger molecules can be tackled right away
          coords :: set of Cartesian coordinates
          tol :: tolerance for dropping the values 
          ram :: size of the allowed block (in bytes)
        Returns 
          co2v :: CSR matrix of shape (coordinate, atomic orbital) 
    """
    from pyscf.nao.m_aos_libnao import aos_libnao
    from pyscf import lib
    from scipy.sparse import csr_matrix
    if not self.init_sv_libnao_orbs : raise RuntimeError('not self.init_sv_libnao')
    assert coords.shape[-1] == 3
    nc,no = len(coords), self.norbs
    bsize = int(min(max(ram / (no*8.0), 1), nc))
    co2v = csr_matrix((nc,no))
    for s,f in lib.prange(0,nc,bsize):
      ca2o = aos_libnao(coords[s:f], no) # compute values of atomic orbitals
      ab = np.where(abs(ca2o)>tol)
      co2v += csr_matrix((ca2o[ab].reshape(-1), (ab[0]+s, ab[1])), shape=(nc,no))
    return co2v 
开发者ID:pyscf,项目名称:pyscf,代码行数:26,代码来源:nao.py

示例10: __init__

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def __init__(self, errgen_rep,
                 mu, eta, m_star, s, unitarypost_data,
                 unitarypost_indices, unitarypost_indptr):
        dim = errgen_rep.dim
        self.errgen_rep = errgen_rep
        if len(unitarypost_data) > 0:  # (nnz > 0)
            self.unitary_postfactor = _sps.csr_matrix(
                (unitarypost_data, unitarypost_indices,
                 unitarypost_indptr), shape=(dim, dim))
        else:
            self.unitary_postfactor = None  # no unitary postfactor

        self.mu = mu
        self.eta = eta
        self.m_star = m_star
        self.s = s
        super(DMOpRep_Lindblad, self).__init__(dim) 
开发者ID:pyGSTio,项目名称:pyGSTi,代码行数:19,代码来源:slowreplib.py

示例11: safereal

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def safereal(A, inplace=False, check=False):
    """
    Returns the real-part of `A` correctly when `A` is either a dense array or
    a sparse matrix
    """
    if check:
        assert(safenorm(A, 'imag') < 1e-6), "Check failed: taking real-part of matrix w/nonzero imaginary part"
    if _sps.issparse(A):
        if _sps.isspmatrix_csr(A):
            if inplace:
                ret = _sps.csr_matrix((_np.real(A.data), A.indices, A.indptr), shape=A.shape, dtype='d')
            else:  # copy
                ret = _sps.csr_matrix((_np.real(A.data).copy(), A.indices.copy(),
                                       A.indptr.copy()), shape=A.shape, dtype='d')
            ret.eliminate_zeros()
            return ret
        else:
            raise NotImplementedError("safereal() doesn't work with %s matrices yet" % str(type(A)))
    else:
        return _np.real(A) 
开发者ID:pyGSTio,项目名称:pyGSTi,代码行数:22,代码来源:matrixtools.py

示例12: safeimag

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def safeimag(A, inplace=False, check=False):
    """
    Returns the imaginary-part of `A` correctly when `A` is either a dense array
    or a sparse matrix
    """
    if check:
        assert(safenorm(A, 'real') < 1e-6), "Check failed: taking imag-part of matrix w/nonzero real part"
    if _sps.issparse(A):
        if _sps.isspmatrix_csr(A):
            if inplace:
                ret = _sps.csr_matrix((_np.imag(A.data), A.indices, A.indptr), shape=A.shape, dtype='d')
            else:  # copy
                ret = _sps.csr_matrix((_np.imag(A.data).copy(), A.indices.copy(),
                                       A.indptr.copy()), shape=A.shape, dtype='d')
            ret.eliminate_zeros()
            return ret
        else:
            raise NotImplementedError("safereal() doesn't work with %s matrices yet" % str(type(A)))
    else:
        return _np.imag(A) 
开发者ID:pyGSTio,项目名称:pyGSTi,代码行数:22,代码来源:matrixtools.py

示例13: test_sparse_lindblad_param

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def test_sparse_lindblad_param(self):
        #Test sparse Lindblad gates

        print("\nGate Test:")
        SparseId = sps.identity(4**2,'d','csr')
        gate = LindbladDenseOp.from_operation_matrix( np.identity(4**2,'d') )
        print("gate Errgen type (should be dense):",type(gate.errorgen.todense()))
        self.assertIsInstance(gate.errorgen.todense(), np.ndarray)
        sparseOp = LindbladOp.from_operation_matrix( SparseId )
        print("spareGate Errgen type (should be sparse):",type(sparseOp.errorgen.tosparse()))
        self.assertIsInstance(sparseOp.errorgen.tosparse(), sps.csr_matrix)
        self.assertArraysAlmostEqual(gate.errorgen.todense(),sparseOp.errorgen.todense())

        perfectG = std2Q_XYICNOT.target_model().operations['Gix'].copy()
        noisyG = std2Q_XYICNOT.target_model().operations['Gix'].copy()
        noisyG.depolarize(0.9)
        Sparse_noisyG = sps.csr_matrix(noisyG,dtype='d')
        Sparse_perfectG = sps.csr_matrix(perfectG,dtype='d')
        op2 = LindbladDenseOp.from_operation_matrix( noisyG, perfectG )
        sparseGate2 = LindbladOp.from_operation_matrix( Sparse_noisyG, Sparse_perfectG )
        print("spareGate2 Errgen type (should be sparse):",type(sparseGate2.errorgen.tosparse()))
        self.assertIsInstance(sparseGate2.errorgen.tosparse(), sps.csr_matrix)
        #print("errgen = \n"); pygsti.tools.print_mx(op2.err_gen,width=4,prec=1)
        #print("sparse errgen = \n"); pygsti.tools.print_mx(sparseGate2.err_gen.toarray(),width=4,prec=1)
        self.assertArraysAlmostEqual(op2.errorgen.todense(),sparseGate2.errorgen.todense()) 
开发者ID:pyGSTio,项目名称:pyGSTi,代码行数:27,代码来源:testAdvancedGatesetParameterization.py

示例14: chebyshev_polynomials

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def chebyshev_polynomials(adj, k):
    """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation)."""
    print("Calculating Chebyshev polynomials up to order {}...".format(k))

    adj_normalized = normalize_adj(adj)
    laplacian = sp.eye(adj.shape[0]) - adj_normalized
    largest_eigval, _ = eigsh(laplacian, 1, which='LM')
    scaled_laplacian = (
        2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0])

    t_k = list()
    t_k.append(sp.eye(adj.shape[0]))
    t_k.append(scaled_laplacian)

    def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
        s_lap = sp.csr_matrix(scaled_lap, copy=True)
        return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two

    for i in range(2, k+1):
        t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian))

    return sparse_to_tuple(t_k) 
开发者ID:thunlp,项目名称:OpenNE,代码行数:24,代码来源:utils.py

示例15: _get_sparse_matrix_from_libsvm

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import csr_matrix [as 别名]
def _get_sparse_matrix_from_libsvm(payload):
    pylist = map(lambda x: x.split(' '), payload.split('\n'))
    colon = ':'
    row = []
    col = []
    data = []
    for row_idx, line in enumerate(pylist):
        for item in line:
            if colon in item:
                col_idx = item.split(colon)[0]
                val = item.split(colon)[1]
                row.append(row_idx)
                col.append(col_idx)
                data.append(val)

    row = np.array(row)
    col = np.array(col).astype(np.int)
    data = np.array(data).astype(np.float)
    if not (len(row) == len(col) and len(col) == len(data)):
        raise RuntimeError("Dimension checking failed when transforming sparse matrix.")

    return csr_matrix((data, (row, col))) 
开发者ID:aws,项目名称:sagemaker-xgboost-container,代码行数:24,代码来源:serve_utils.py


注:本文中的scipy.sparse.csr_matrix方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。