当前位置: 首页>>代码示例>>Python>>正文


Python sparse.bsr_matrix方法代码示例

本文整理汇总了Python中scipy.sparse.bsr_matrix方法的典型用法代码示例。如果您正苦于以下问题:Python sparse.bsr_matrix方法的具体用法?Python sparse.bsr_matrix怎么用?Python sparse.bsr_matrix使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.sparse的用法示例。


在下文中一共展示了sparse.bsr_matrix方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_is_extension_type

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_is_extension_type(check_scipy):
    assert not com.is_extension_type([1, 2, 3])
    assert not com.is_extension_type(np.array([1, 2, 3]))
    assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3]))

    cat = pd.Categorical([1, 2, 3])
    assert com.is_extension_type(cat)
    assert com.is_extension_type(pd.Series(cat))
    assert com.is_extension_type(pd.SparseArray([1, 2, 3]))
    assert com.is_extension_type(pd.SparseSeries([1, 2, 3]))
    assert com.is_extension_type(pd.DatetimeIndex(['2000'], tz="US/Eastern"))

    dtype = DatetimeTZDtype("ns", tz="US/Eastern")
    s = pd.Series([], dtype=dtype)
    assert com.is_extension_type(s)

    if check_scipy:
        import scipy.sparse
        assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3])) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:21,代码来源:test_common.py

示例2: test_is_extension_type

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_is_extension_type(check_scipy):
    assert not com.is_extension_type([1, 2, 3])
    assert not com.is_extension_type(np.array([1, 2, 3]))
    assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3]))

    cat = pd.Categorical([1, 2, 3])
    assert com.is_extension_type(cat)
    assert com.is_extension_type(pd.Series(cat))
    assert com.is_extension_type(pd.SparseArray([1, 2, 3]))
    assert com.is_extension_type(pd.SparseSeries([1, 2, 3]))
    assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))

    dtype = DatetimeTZDtype("ns", tz="US/Eastern")
    s = pd.Series([], dtype=dtype)
    assert com.is_extension_type(s)

    if check_scipy:
        import scipy.sparse
        assert not com.is_extension_type(scipy.sparse.bsr_matrix([1, 2, 3])) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:21,代码来源:test_common.py

示例3: test_is_extension_type

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_is_extension_type():
    assert not com.is_extension_type([1, 2, 3])
    assert not com.is_extension_type(np.array([1, 2, 3]))
    assert not com.is_extension_type(pd.DatetimeIndex([1, 2, 3]))

    cat = pd.Categorical([1, 2, 3])
    assert com.is_extension_type(cat)
    assert com.is_extension_type(pd.Series(cat))
    assert com.is_extension_type(pd.SparseArray([1, 2, 3]))
    assert com.is_extension_type(pd.SparseSeries([1, 2, 3]))
    assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))

    dtype = DatetimeTZDtype("ns", tz="US/Eastern")
    s = pd.Series([], dtype=dtype)
    assert com.is_extension_type(s)

    # This test will only skip if the previous assertions
    # pass AND scipy is not installed.
    sparse = pytest.importorskip("scipy.sparse")
    assert not com.is_extension_type(sparse.bsr_matrix([1, 2, 3])) 
开发者ID:securityclippy,项目名称:elasticintel,代码行数:22,代码来源:test_common.py

示例4: random_bsr_matrix

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"):
    Y = np.zeros((M, N), dtype=dtype)
    assert M % BS_R == 0
    assert N % BS_C == 0
    nnz = int(density * M * N)
    num_blocks = int(nnz / (BS_R * BS_C)) + 1
    candidate_blocks = np.asarray(
        list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))
    )
    assert candidate_blocks.shape[0] == M // BS_R * N // BS_C
    chosen_blocks = candidate_blocks[
        np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)
    ]
    for i in range(len(chosen_blocks)):
        r, c = chosen_blocks[i]
        Y[r : r + BS_R, c : c + BS_C] = np.random.uniform(-0.1, 0.1, (BS_R, BS_C))
    s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C))
    assert s.data.shape == (num_blocks, BS_R, BS_C)
    assert s.data.size >= nnz
    assert s.indices.shape == (num_blocks,)
    assert s.indptr.shape == (M // BS_R + 1,)
    return s.todense() 
开发者ID:apache,项目名称:incubator-tvm,代码行数:24,代码来源:deploy_sparse.py

示例5: random_bsr_matrix

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"):
    Y = np.zeros((M, N), dtype=dtype)
    assert M % BS_R == 0
    assert N % BS_C == 0
    nnz = int(density * M * N)
    num_blocks = int(nnz / (BS_R * BS_C)) + 1
    candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C))))
    assert candidate_blocks.shape[0] == M // BS_R * N // BS_C
    chosen_blocks = candidate_blocks[np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)]
    for i in range(len(chosen_blocks)):
        r, c = chosen_blocks[i]
        Y[r:r+BS_R,c:c+BS_C] = np.random.randn(BS_R, BS_C)
    s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C))
    assert s.data.shape == (num_blocks, BS_R, BS_C)
    assert s.data.size >= nnz
    assert s.indices.shape == (num_blocks, )
    assert s.indptr.shape == (M // BS_R + 1, )
    return s 
开发者ID:apache,项目名称:incubator-tvm,代码行数:20,代码来源:test_sparse_dense_convert.py

示例6: random_bsr_matrix

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype):
    import itertools
    Y = np.zeros((M, N), dtype=dtype)
    assert M % BS_R == 0
    assert N % BS_C == 0
    nnz = int(density * M * N)
    num_blocks = int(nnz / (BS_R * BS_C)) + 1
    candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C))))
    assert candidate_blocks.shape[0] == M // BS_R * N // BS_C
    chosen_blocks = candidate_blocks[np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False)]
    for i in range(len(chosen_blocks)):
        r, c = chosen_blocks[i]
        Y[r:r + BS_R, c:c + BS_C] = np.random.randn(BS_R, BS_C)
    s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C))
    assert s.data.shape == (num_blocks, BS_R, BS_C)
    assert s.indices.shape == (num_blocks, )
    assert s.indptr.shape == (M // BS_R + 1, )
    return s 
开发者ID:apache,项目名称:incubator-tvm,代码行数:20,代码来源:test_topi_sparse.py

示例7: test_is_sparse

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_is_sparse(check_scipy):
    assert com.is_sparse(pd.SparseArray([1, 2, 3]))
    assert com.is_sparse(pd.SparseSeries([1, 2, 3]))

    assert not com.is_sparse(np.array([1, 2, 3]))

    if check_scipy:
        import scipy.sparse
        assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3])) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:11,代码来源:test_common.py

示例8: test_is_scipy_sparse

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_is_scipy_sparse():
    from scipy.sparse import bsr_matrix
    assert com.is_scipy_sparse(bsr_matrix([1, 2, 3]))

    assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3]))
    assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3])) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:8,代码来源:test_common.py

示例9: test_scale_rows_and_cols

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_scale_rows_and_cols(self):
        D = matrix([[1,0,0,2,3],
                    [0,4,0,5,0],
                    [0,0,6,7,0]])

        #TODO expose through function
        S = csr_matrix(D)
        v = array([1,2,3])
        csr_scale_rows(3,5,S.indptr,S.indices,S.data,v)
        assert_equal(S.todense(), diag(v)*D)

        S = csr_matrix(D)
        v = array([1,2,3,4,5])
        csr_scale_columns(3,5,S.indptr,S.indices,S.data,v)
        assert_equal(S.todense(), D*diag(v))

        # blocks
        E = kron(D,[[1,2],[3,4]])
        S = bsr_matrix(E,blocksize=(2,2))
        v = array([1,2,3,4,5,6])
        bsr_scale_rows(3,5,2,2,S.indptr,S.indices,S.data,v)
        assert_equal(S.todense(), diag(v)*E)

        S = bsr_matrix(E,blocksize=(2,2))
        v = array([1,2,3,4,5,6,7,8,9,10])
        bsr_scale_columns(3,5,2,2,S.indptr,S.indices,S.data,v)
        assert_equal(S.todense(), E*diag(v))

        E = kron(D,[[1,2,3],[4,5,6]])
        S = bsr_matrix(E,blocksize=(2,3))
        v = array([1,2,3,4,5,6])
        bsr_scale_rows(3,5,2,3,S.indptr,S.indices,S.data,v)
        assert_equal(S.todense(), diag(v)*E)

        S = bsr_matrix(E,blocksize=(2,3))
        v = array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
        bsr_scale_columns(3,5,2,3,S.indptr,S.indices,S.data,v)
        assert_equal(S.todense(), E*diag(v)) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:40,代码来源:test_spfuncs.py

示例10: test_check_symmetric

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_check_symmetric():
    arr_sym = np.array([[0, 1], [1, 2]])
    arr_bad = np.ones(2)
    arr_asym = np.array([[0, 2], [0, 2]])

    test_arrays = {'dense': arr_asym,
                   'dok': sp.dok_matrix(arr_asym),
                   'csr': sp.csr_matrix(arr_asym),
                   'csc': sp.csc_matrix(arr_asym),
                   'coo': sp.coo_matrix(arr_asym),
                   'lil': sp.lil_matrix(arr_asym),
                   'bsr': sp.bsr_matrix(arr_asym)}

    # check error for bad inputs
    assert_raises(ValueError, check_symmetric, arr_bad)

    # check that asymmetric arrays are properly symmetrized
    for arr_format, arr in test_arrays.items():
        # Check for warnings and errors
        assert_warns(UserWarning, check_symmetric, arr)
        assert_raises(ValueError, check_symmetric, arr, raise_exception=True)

        output = check_symmetric(arr, raise_warning=False)
        if sp.issparse(output):
            assert_equal(output.format, arr_format)
            assert_array_equal(output.toarray(), arr_sym)
        else:
            assert_array_equal(output, arr_sym) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:30,代码来源:test_validation.py

示例11: test_zero_variance

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_zero_variance():
    # Test VarianceThreshold with default setting, zero variance.

    for X in [data, csr_matrix(data), csc_matrix(data), bsr_matrix(data)]:
        sel = VarianceThreshold().fit(X)
        assert_array_equal([0, 1, 3, 4], sel.get_support(indices=True))

    assert_raises(ValueError, VarianceThreshold().fit, [[0, 1, 2, 3]])
    assert_raises(ValueError, VarianceThreshold().fit, [[0, 1], [0, 1]]) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:11,代码来源:test_variance_threshold.py

示例12: bsr_matrix

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def bsr_matrix(*args, **kws):
    """Takes the same arguments as ``scipy.sparse.bsr_matrix``.

    Returns a BSR CUDA matrix.
    """
    mat = ss.bsr_matrix(*args, **kws)
    return CudaBSRMatrix().from_host_matrix(mat) 
开发者ID:numba,项目名称:pyculib,代码行数:9,代码来源:api.py

示例13: test_is_sparse

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_is_sparse():
    assert com.is_sparse(pd.SparseArray([1, 2, 3]))
    assert com.is_sparse(pd.SparseSeries([1, 2, 3]))

    assert not com.is_sparse(np.array([1, 2, 3]))

    # This test will only skip if the previous assertions
    # pass AND scipy is not installed.
    sparse = pytest.importorskip("scipy.sparse")
    assert not com.is_sparse(sparse.bsr_matrix([1, 2, 3])) 
开发者ID:securityclippy,项目名称:elasticintel,代码行数:12,代码来源:test_common.py

示例14: test_is_scipy_sparse

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def test_is_scipy_sparse():
    tm._skip_if_no_scipy()

    from scipy.sparse import bsr_matrix
    assert com.is_scipy_sparse(bsr_matrix([1, 2, 3]))

    assert not com.is_scipy_sparse(pd.SparseArray([1, 2, 3]))
    assert not com.is_scipy_sparse(pd.SparseSeries([1, 2, 3])) 
开发者ID:securityclippy,项目名称:elasticintel,代码行数:10,代码来源:test_common.py

示例15: check_matrix

# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import bsr_matrix [as 别名]
def check_matrix(X, format='csc', dtype=np.float32):
    """
    This function takes a matrix as input and transforms it into the specified format.
    The matrix in input can be either sparse or ndarray.
    If the matrix in input has already the desired format, it is returned as-is
    the dtype parameter is always applied and the default is np.float32
    :param X:
    :param format:
    :param dtype:
    :return:
    """


    if format == 'csc' and not isinstance(X, sps.csc_matrix):
        return X.tocsc().astype(dtype)
    elif format == 'csr' and not isinstance(X, sps.csr_matrix):
        return X.tocsr().astype(dtype)
    elif format == 'coo' and not isinstance(X, sps.coo_matrix):
        return X.tocoo().astype(dtype)
    elif format == 'dok' and not isinstance(X, sps.dok_matrix):
        return X.todok().astype(dtype)
    elif format == 'bsr' and not isinstance(X, sps.bsr_matrix):
        return X.tobsr().astype(dtype)
    elif format == 'dia' and not isinstance(X, sps.dia_matrix):
        return X.todia().astype(dtype)
    elif format == 'lil' and not isinstance(X, sps.lil_matrix):
        return X.tolil().astype(dtype)

    elif format == 'npy':
        if sps.issparse(X):
            return X.toarray().astype(dtype)
        else:
            return np.array(X)

    elif isinstance(X, np.ndarray):
        X = sps.csr_matrix(X, dtype=dtype)
        X.eliminate_zeros()
        return check_matrix(X, format=format, dtype=dtype)
    else:
        return X.astype(dtype) 
开发者ID:MaurizioFD,项目名称:RecSys2019_DeepLearning_Evaluation,代码行数:42,代码来源:Recommender_utils.py


注:本文中的scipy.sparse.bsr_matrix方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。