本文整理汇总了Python中scipy.signal.windows.hann方法的典型用法代码示例。如果您正苦于以下问题:Python windows.hann方法的具体用法?Python windows.hann怎么用?Python windows.hann使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.signal.windows
的用法示例。
在下文中一共展示了windows.hann方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _stft
# 需要导入模块: from scipy.signal import windows [as 别名]
# 或者: from scipy.signal.windows import hann [as 别名]
def _stft(self, data, inverse=False, length=None):
"""
Single entrypoint for both stft and istft. This computes stft and istft with librosa on stereo data. The two
channels are processed separately and are concatenated together in the result. The expected input formats are:
(n_samples, 2) for stft and (T, F, 2) for istft.
:param data: np.array with either the waveform or the complex spectrogram depending on the parameter inverse
:param inverse: should a stft or an istft be computed.
:return: Stereo data as numpy array for the transform. The channels are stored in the last dimension
"""
assert not (inverse and length is None)
data = np.asfortranarray(data)
N = self._params["frame_length"]
H = self._params["frame_step"]
win = hann(N, sym=False)
fstft = istft if inverse else stft
win_len_arg = {"win_length": None, "length": length} if inverse else {"n_fft": N}
n_channels = data.shape[-1]
out = []
for c in range(n_channels):
d = data[:, :, c].T if inverse else data[:, c]
s = fstft(d, hop_length=H, window=win, center=False, **win_len_arg)
s = np.expand_dims(s.T, 2-inverse)
out.append(s)
if len(out) == 1:
return out[0]
return np.concatenate(out, axis=2-inverse)
示例2: test_basic
# 需要导入模块: from scipy.signal import windows [as 别名]
# 或者: from scipy.signal.windows import hann [as 别名]
def test_basic(self):
assert_allclose(windows.hann(6, sym=False),
[0, 0.25, 0.75, 1.0, 0.75, 0.25])
assert_allclose(windows.hann(7, sym=False),
[0, 0.1882550990706332, 0.6112604669781572,
0.9504844339512095, 0.9504844339512095,
0.6112604669781572, 0.1882550990706332])
assert_allclose(windows.hann(6, True),
[0, 0.3454915028125263, 0.9045084971874737,
0.9045084971874737, 0.3454915028125263, 0])
assert_allclose(windows.hann(7),
[0, 0.25, 0.75, 1.0, 0.75, 0.25, 0])
示例3: test_extremes
# 需要导入模块: from scipy.signal import windows [as 别名]
# 或者: from scipy.signal.windows import hann [as 别名]
def test_extremes(self):
# Test extremes of alpha correspond to boxcar and hann
tuk0 = windows.tukey(100, 0)
box0 = windows.boxcar(100)
assert_array_almost_equal(tuk0, box0)
tuk1 = windows.tukey(100, 1)
han1 = windows.hann(100)
assert_array_almost_equal(tuk1, han1)
示例4: test_invalid_inputs
# 需要导入模块: from scipy.signal import windows [as 别名]
# 或者: from scipy.signal.windows import hann [as 别名]
def test_invalid_inputs(self):
# Window is not a float, tuple, or string
assert_raises(ValueError, windows.get_window, set('hann'), 8)
# Unknown window type error
assert_raises(ValueError, windows.get_window, 'broken', 4)
示例5: test_deprecation
# 需要导入模块: from scipy.signal import windows [as 别名]
# 或者: from scipy.signal.windows import hann [as 别名]
def test_deprecation():
if dep_hann.__doc__ is not None: # can be None with `-OO` mode
assert_('signal.hann is deprecated' in dep_hann.__doc__)
assert_('deprecated' not in windows.hann.__doc__)
示例6: nlfer
# 需要导入模块: from scipy.signal import windows [as 别名]
# 或者: from scipy.signal.windows import hann [as 别名]
def nlfer(signal, pitch, parameters):
#---------------------------------------------------------------
# Set parameters.
#---------------------------------------------------------------
N_f0_min = np.around((parameters['f0_min']*2/float(signal.new_fs))*pitch.nfft)
N_f0_max = np.around((parameters['f0_max']/float(signal.new_fs))*pitch.nfft)
window = hann(pitch.frame_size+2)[1:-1]
data = np.zeros((signal.size)) #Needs other array, otherwise stride and
data[:] = signal.filtered #windowing will modify signal.filtered
#---------------------------------------------------------------
# Main routine.
#---------------------------------------------------------------
samples = np.arange(int(np.fix(float(pitch.frame_size)/2)),
signal.size-int(np.fix(float(pitch.frame_size)/2)),
pitch.frame_jump)
data_matrix = np.empty((len(samples), pitch.frame_size))
data_matrix[:, :] = stride_matrix(data, len(samples),
pitch.frame_size, pitch.frame_jump)
data_matrix *= window
specData = np.fft.rfft(data_matrix, pitch.nfft)
frame_energy = np.abs(specData[:, int(N_f0_min-1):int(N_f0_max)]).sum(axis=1)
pitch.set_energy(frame_energy, parameters['nlfer_thresh1'])
pitch.set_frames_pos(samples)
示例7: lagged_coherence_1freq
# 需要导入模块: from scipy.signal import windows [as 别名]
# 或者: from scipy.signal.windows import hann [as 别名]
def lagged_coherence_1freq(sig, fs, freq, n_cycles):
"""Compute the lagged coherence of a frequency using the hanning-taper FFT method.
Parameters
----------
sig : 1d array
Time series.
fs : float
Sampling rate, in Hz.
freq : float
The frequency at which to estimate lagged coherence.
n_cycles : float
Number of cycles at the examined frequency to use to compute lagged coherence.
Returns
-------
float
The computed lagged coherence value.
"""
# Determine number of samples to be used in each window to compute lagged coherence
n_samps = int(np.ceil(n_cycles * fs / freq))
# Split the signal into chunks
chunks = split_signal(sig, n_samps)
n_chunks = len(chunks)
# For each chunk, calculate the Fourier coefficients at the frequency of interest
hann_window = hann(n_samps)
fft_freqs = np.fft.fftfreq(n_samps, 1 / float(fs))
fft_freqs_idx = np.argmin(np.abs(fft_freqs - freq))
fft_coefs = np.zeros(n_chunks, dtype=complex)
for ind, chunk in enumerate(chunks):
fourier_coef = np.fft.fft(chunk * hann_window)
fft_coefs[ind] = fourier_coef[fft_freqs_idx]
# Compute the lagged coherence value
lcs_num = 0
for ind in range(n_chunks - 1):
lcs_num += fft_coefs[ind] * np.conj(fft_coefs[ind + 1])
lcs_denom = np.sqrt(np.sum(np.abs(fft_coefs[:-1])**2) * np.sum(np.abs(fft_coefs[1:])**2))
return np.abs(lcs_num / lcs_denom)