本文整理汇总了Python中scipy.optimize.rosen_der方法的典型用法代码示例。如果您正苦于以下问题:Python optimize.rosen_der方法的具体用法?Python optimize.rosen_der怎么用?Python optimize.rosen_der使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.optimize
的用法示例。
在下文中一共展示了optimize.rosen_der方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_minimize_l_bfgs_b_maxfun_interruption
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def test_minimize_l_bfgs_b_maxfun_interruption(self):
# gh-6162
f = optimize.rosen
g = optimize.rosen_der
values = []
x0 = np.ones(7) * 1000
def objfun(x):
value = f(x)
values.append(value)
return value
# Look for an interesting test case.
# Request a maxfun that stops at a particularly bad function
# evaluation somewhere between 100 and 300 evaluations.
low, medium, high = 30, 100, 300
optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high)
v, k = max((y, i) for i, y in enumerate(values[medium:]))
maxfun = medium + k
# If the minimization strategy is reasonable,
# the minimize() result should not be worse than the best
# of the first 30 function evaluations.
target = min(values[:low])
xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun)
assert_array_less(fmin, target)
示例2: test_translate_bound_f_jac
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def test_translate_bound_f_jac():
from scipy.optimize import rosen_der
def rosen_test(x):
x, y = x
return (1.0 - x)**2 + 100.0*(y - x**2)**2
low, high = [-2, -.2], [3.0, 4]
f_j, into, outof = translate_bound_f_jac(rosen_test, rosen_der, low=low, high=high)
point = [3, -2]
f0, j0 = f_j(point)
f0_check = translate_bound_func(rosen_test, low=low, high=high)[0](point)
assert_allclose(f0_check, f0, rtol=1e-13)
j0_check = translate_bound_jac(rosen_der, low=low, high=high)[0](point)
assert_allclose(j0_check, j0, rtol=1e-13)
示例3: compute_dr_wrt
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def compute_dr_wrt(self, wrt):
if wrt is self.x:
if visualize:
import matplotlib.pyplot as plt
residuals = np.sum(self.r**2)
print('------> RESIDUALS %.2e' % (residuals,))
print('------> CURRENT GUESS %s' % (str(self.x.r),))
plt.figure(123)
if not hasattr(self, 'vs'):
self.vs = []
self.xs = []
self.ys = []
self.vs.append(residuals)
self.xs.append(self.x.r[0])
self.ys.append(self.x.r[1])
plt.clf();
plt.subplot(1,2,1)
plt.plot(self.vs)
plt.subplot(1,2,2)
plt.plot(self.xs, self.ys)
plt.draw()
return row(rosen_der(self.x.r))
示例4: test_rosenbrock
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def test_rosenbrock(self):
x0 = np.array([-1.2, 1.0])
sol = optimize.minimize(optimize.rosen, x0,
jac=optimize.rosen_der,
hess=optimize.rosen_hess,
tol=1e-5,
method='Newton-CG')
assert_(sol.success, sol.message)
assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)
示例5: test_minimize_l_bfgs_maxls
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def test_minimize_l_bfgs_maxls(self):
# check that the maxls is passed down to the Fortran routine
sol = optimize.minimize(optimize.rosen, np.array([-1.2,1.0]),
method='L-BFGS-B', jac=optimize.rosen_der,
options={'disp': False, 'maxls': 1})
assert_(not sol.success)
示例6: setup_method
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def setup_method(self):
self.x0 = [5, 5]
self.func = optimize.rosen
self.jac = optimize.rosen_der
self.hess = optimize.rosen_hess
self.hessp = optimize.rosen_hess_prod
self.bounds = [(0., 10.), (0., 10.)]
示例7: test_translate_bound_jac
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def test_translate_bound_jac():
from scipy.optimize import rosen_der
def rosen_test(x):
x, y = x
return (1.0 - x)**2 + 100.0*(y - x**2)**2
j, into, outof = translate_bound_jac(rosen_der, low=[-2, -.2], high=[3.0, 4])
f, into, outof = translate_bound_func(rosen_test, low=[-2, -.2], high=[3.0, 4])
point = [3, -2]
jac_num = jacobian(f, point, perturbation=1e-8)
jac_anal = j(point)
assert_allclose(jac_num, jac_anal, rtol=1e-6)
示例8: rosen_for_sensi
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def rosen_for_sensi(max_sensi_order, integrated=False, x=None):
"""
Rosenbrock function from scipy.optimize.
"""
if x is None:
x = [0, 1]
return obj_for_sensi(so.rosen,
so.rosen_der,
so.rosen_hess,
max_sensi_order, integrated, x)
示例9: create_problem
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def create_problem():
# define a pypesto objective
objective = pypesto.Objective(fun=so.rosen,
grad=so.rosen_der,
hess=so.rosen_hess)
# define a pypesto problem
(lb, ub) = create_bounds()
problem = pypesto.Problem(objective=objective, lb=lb, ub=ub)
return problem
示例10: test_minimize_callback_copies_array
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import rosen_der [as 别名]
def test_minimize_callback_copies_array(self, method):
# Check that arrays passed to callbacks are not modified
# inplace by the optimizer afterward
if method in ('fmin_tnc', 'fmin_l_bfgs_b'):
func = lambda x: (optimize.rosen(x), optimize.rosen_der(x))
else:
func = optimize.rosen
jac = optimize.rosen_der
hess = optimize.rosen_hess
x0 = np.zeros(10)
# Set options
kwargs = {}
if method.startswith('fmin'):
routine = getattr(optimize, method)
if method == 'fmin_slsqp':
kwargs['iter'] = 5
elif method == 'fmin_tnc':
kwargs['maxfun'] = 100
else:
kwargs['maxiter'] = 5
else:
def routine(*a, **kw):
kw['method'] = method
return optimize.minimize(*a, **kw)
if method == 'TNC':
kwargs['options'] = dict(maxiter=100)
else:
kwargs['options'] = dict(maxiter=5)
if method in ('fmin_ncg',):
kwargs['fprime'] = jac
elif method in ('Newton-CG',):
kwargs['jac'] = jac
elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg',
'trust-constr'):
kwargs['jac'] = jac
kwargs['hess'] = hess
# Run with callback
results = []
def callback(x, *args, **kwargs):
results.append((x, np.copy(x)))
sol = routine(func, x0, callback=callback, **kwargs)
# Check returned arrays coincide with their copies and have no memory overlap
assert_(len(results) > 2)
assert_(all(np.all(x == y) for x, y in results))
assert_(not any(np.may_share_memory(x[0], y[0]) for x, y in itertools.combinations(results, 2)))