当前位置: 首页>>代码示例>>Python>>正文


Python optimize.root方法代码示例

本文整理汇总了Python中scipy.optimize.root方法的典型用法代码示例。如果您正苦于以下问题:Python optimize.root方法的具体用法?Python optimize.root怎么用?Python optimize.root使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.root方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: find_first_best

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def find_first_best(self):
        '''
        Find the first best allocation
        '''
        model = self.model
        S, Θ, G = self.S, self.Θ, self.G
        Uc, Un = model.Uc, model.Un

        def res(z):
            c = z[:S]
            n = z[S:]
            return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

        res = root(res, 0.5 * np.ones(2 * S))

        if not res.success:
            raise Exception('Could not find first best')

        self.cFB = res.x[:S]
        self.nFB = res.x[S:]

        # Multiplier on the resource constraint
        self.ΞFB = Uc(self.cFB, self.nFB)
        self.zFB = np.hstack([self.cFB, self.nFB, self.ΞFB]) 
开发者ID:QuantEcon,项目名称:QuantEcon.lectures.code,代码行数:26,代码来源:sequential_allocation.py

示例2: time0_allocation

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def time0_allocation(self, B_, s_0):
        '''
        Finds the optimal allocation given initial government debt B_ and state s_0
        '''
        model, π, Θ, G, β = self.model, self.π, self.Θ, self.G, self.β
        Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

        # First order conditions of planner's problem
        def FOC(z):
            μ, c, n, Ξ = z
            xprime = self.time1_allocation(μ)[2]
            return np.hstack([Uc(c, n) * (c - B_) + Un(c, n) * n + β * π[s_0] @ xprime,
                              Uc(c, n) - μ * (Ucc(c, n) *
                                               (c - B_) + Uc(c, n)) - Ξ,
                              Un(c, n) - μ * (Unn(c, n) * n +
                                               Un(c, n)) + Θ[s_0] * Ξ,
                              (Θ * n - c - G)[s_0]])

        # Find root
        res = root(FOC, np.array(
            [0, self.cFB[s_0], self.nFB[s_0], self.ΞFB[s_0]]))
        if not res.success:
            raise Exception('Could not find time 0 LS allocation.')

        return res.x 
开发者ID:QuantEcon,项目名称:QuantEcon.lectures.code,代码行数:27,代码来源:sequential_allocation.py

示例3: find_first_best

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def find_first_best(self):
        '''
        Find the first best allocation
        '''
        Para = self.Para
        S,Theta,Uc,Un,G = self.S,self.Theta,Para.Uc,Para.Un,self.G

        def res(z):
            c = z[:S]
            n = z[S:]
            return np.hstack(
            [Theta*Uc(c,n)+Un(c,n), Theta*n - c - G]
            )
        res = root(res,0.5*np.ones(2*S))

        if not res.success:
            raise Exception('Could not find first best')

        self.cFB = res.x[:S]
        self.nFB = res.x[S:]
        self.XiFB = Uc(self.cFB,self.nFB) #multiplier on the resource constraint.
        self.zFB = np.hstack([self.cFB,self.nFB,self.XiFB]) 
开发者ID:QuantEcon,项目名称:QuantEcon.lectures.code,代码行数:24,代码来源:lucas_stokey.py

示例4: find_first_best

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def find_first_best(self):
        '''
        Find the first best allocation
        '''
        model = self.model
        S, Θ, Uc, Un, G = self.S, self.Θ, model.Uc, model.Un, self.G

        def res(z):
            c = z[:S]
            n = z[S:]
            return np.hstack(
                [Θ * Uc(c, n) + Un(c, n), Θ * n - c - G]
            )
        res = root(res, 0.5 * np.ones(2 * S))

        if not res.success:
            raise Exception('Could not find first best')

        self.cFB = res.x[:S]
        self.nFB = res.x[S:]
        # multiplier on the resource constraint.
        self.ΞFB = Uc(self.cFB, self.nFB)
        self.zFB = np.hstack([self.cFB, self.nFB, self.ΞFB]) 
开发者ID:QuantEcon,项目名称:QuantEcon.lectures.code,代码行数:25,代码来源:sequential_allocation.py

示例5: find_first_best

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def find_first_best(self):
        '''
        Find the first best allocation
        '''
        Para = self.Para
        S,Theta,Uc,Un,G = self.S,self.Theta,Para.Uc,Para.Un,self.G
        
        def res(z):
            c = z[:S]
            n = z[S:]
            return np.hstack(
            [Theta*Uc(c,n)+Un(c,n), Theta*n - c - G]            
            )
        res = root(res,0.5*np.ones(2*S))
        
        if not res.success:
            raise Exception('Could not find first best')
        
        self.cFB = res.x[:S]
        self.nFB = res.x[S:]
        self.XiFB = Uc(self.cFB,self.nFB) #multiplier on the resource constraint.
        self.zFB = np.hstack([self.cFB,self.nFB,self.XiFB]) 
开发者ID:QuantEcon,项目名称:QuantEcon.lectures.code,代码行数:24,代码来源:lucas_stokey.py

示例6: time0_allocation

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def time0_allocation(self,B_,s_0):
        '''
        Finds the optimal allocation given initial government debt B_ and state s_0
        '''
        Para,Pi,Theta,G,beta = self.Para,self.Pi,self.Theta,self.G,self.beta
        Uc,Ucc,Un,Unn = Para.Uc,Para.Ucc,Para.Un,Para.Unn
        
        #first order conditions of planner's problem
        def FOC(z):
            mu,c,n,Xi = z
            xprime = self.time1_allocation(mu)[2]
            return np.hstack([
            Uc(c,n)*(c-B_) + Un(c,n)*n + beta*Pi[s_0].dot(xprime),
            Uc(c,n) - mu*(Ucc(c,n)*(c-B_) + Uc(c,n)) - Xi,
            Un(c,n) - mu*(Unn(c,n)*n+Un(c,n)) + Theta[s_0]*Xi,   
            (Theta*n - c - G)[s_0]
            ])
        
        #find root
        res = root(FOC,np.array([0.,self.cFB[s_0],self.nFB[s_0],self.XiFB[s_0]]))
        if not res.success:
            raise Exception('Could not find time 0 LS allocation.')

        return res.x 
开发者ID:QuantEcon,项目名称:QuantEcon.lectures.code,代码行数:26,代码来源:lucas_stokey.py

示例7: test_f_size

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def test_f_size(self):
        # gh8320
        # check that decreasing the size of the returned array raises an error
        # and doesn't segfault
        class fun(object):
            def __init__(self):
                self.count = 0

            def __call__(self, x):
                self.count += 1

                if not (self.count % 5):
                    ret = x[0] + 0.5 * (x[0] - x[1]) ** 3 - 1.0
                else:
                    ret = ([x[0] + 0.5 * (x[0] - x[1]) ** 3 - 1.0,
                           0.5 * (x[1] - x[0]) ** 3 + x[1]])

                return ret

        F = fun()
        with assert_raises(ValueError):
            sol = root(F, [0.1, 0.0], method='lm') 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:24,代码来源:test__root.py

示例8: percentile_scale

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def percentile_scale(self, per=0.9):
        """Calculate the percentile scale of the isotrope model.

        This is the distance, where the given percentile of the variance
        is reached by the variogram
        """
        # check the given percentile
        if not 0.0 < per < 1.0:
            raise ValueError(
                "percentile needs to be within (0, 1), got: " + str(per)
            )

        # define a curve, that has its root at the wanted point
        def curve(x):
            return 1.0 - self.correlation(x) - per

        # take 'per * len_scale' as initial guess
        return root(curve, per * self.len_scale)["x"][0]

    ###########################################################################
    ### spectrum methods (can be overridden for speedup) ######################
    ########################################################################### 
开发者ID:GeoStat-Framework,项目名称:GSTools,代码行数:24,代码来源:base.py

示例9: _nodes_LGL_old

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def _nodes_LGL_old(self, n):
        """Return Legendre-Gauss-Lobatto nodes.
        Gauss-Lobatto nodes are roots of P'_{n-1}(x) and -1, 1.
        ref. http://keisan.casio.jp/exec/system/1360718708
        """
        x0 = np.zeros(0)
        for i in range(2, n):
            xi = (1-3.0*(n-2)/8.0/(n-1)**3)*np.cos((4.0*i-3)/(4.0*(n-1)+1)*np.pi)
            x0 = np.append(x0, xi)
        x0 = np.sort(x0)

        roots = np.zeros(0)
        for x in x0:
            optResult = optimize.root(self._LegendreDerivative, x, args=(n-1,))
            roots = np.append(roots, optResult.x)
        nodes = np.hstack((-1, roots, 1))
        return nodes 
开发者ID:istellartech,项目名称:OpenGoddard,代码行数:19,代码来源:optimize.py

示例10: logistic_default_param

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def logistic_default_param(x, y):
        slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
        A = min(y) if slope > 0 else max(y)
        K = max(y) if slope > 0 else min(y)
        if len(x) == 3:
            if sum(y) == 0:
                # if we have all zeros, the logistic should just return all zeros
                A, K, M, B = 0, 0, 0, 0
            else:
                assert y[0] != y[1] != y[2], "x = {}, y = {}".format(x, y)
                B0 = (10 / float(max(x) - min(x)))
                B = optimize.root(TimeSeries._logistic_end_point_error, x0=B0, args=(A, K, x, y, slope))['x'][0]
                M = TimeSeries._approx_M(A, K, B, x[1], y[1])
        else:
            B = 10 / float(max(x) - min(x))
            M = min(x) + (max(x) - min(x)) / 2.
        return A, K, M, B 
开发者ID:energyPATHWAYS,项目名称:EnergyPATHWAYS,代码行数:19,代码来源:time_series.py

示例11: _untransform_logistic

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def _untransform_logistic(self, unconstrained, constrained):
        """
        Function to allow using a numerical root-finder to reverse the
        logistic transform.
        """
        resid = np.zeros(unconstrained.shape, dtype=unconstrained.dtype)
        exp = np.exp(unconstrained)
        sum_exp = np.sum(exp)
        for i in range(len(unconstrained)):
            resid[i] = (unconstrained[i] -
                        np.log(1 + sum_exp - exp[i]) +
                        np.log(1 / constrained[i] - 1))
        return resid 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:15,代码来源:markov_switching.py

示例12: test_tol_parameter

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def test_tol_parameter(self):
        # Check that the minimize() tol= argument does something
        def func(z):
            x, y = z
            return np.array([x**3 - 1, y**3 - 1])

        def dfunc(z):
            x, y = z
            return np.array([[3*x**2, 0], [0, 3*y**2]])

        for method in ['hybr', 'lm', 'broyden1', 'broyden2', 'anderson',
                       'diagbroyden', 'krylov']:
            if method in ('linearmixing', 'excitingmixing'):
                # doesn't converge
                continue

            if method in ('hybr', 'lm'):
                jac = dfunc
            else:
                jac = None

            sol1 = root(func, [1.1,1.1], jac=jac, tol=1e-4, method=method)
            sol2 = root(func, [1.1,1.1], jac=jac, tol=0.5, method=method)
            msg = "%s: %s vs. %s" % (method, func(sol1.x), func(sol2.x))
            assert_(sol1.success, msg)
            assert_(sol2.success, msg)
            assert_(abs(func(sol1.x)).max() < abs(func(sol2.x)).max(),
                    msg) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:30,代码来源:test__root.py

示例13: _check_root

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def _check_root(self, f, method, f_tol=1e-2):
        res = root(f, f.xin, method=method,
                   options={'ftol': f_tol, 'maxiter': 200, 'disp': 0})
        assert_(np.absolute(res.fun).max() < f_tol) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:6,代码来源:test_nonlin.py

示例14: test_problem_root

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def test_problem_root(self):
        """ Tests for root """
        for f in [F, F2, F3, F4_powell, F5, F6]:
            for meth in SOLVERS:
                if meth in f.KNOWN_BAD:
                    if meth in MUST_WORK:
                        yield self._check_func_fail, f, meth
                    continue
                yield self._check_root, f, meth 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:11,代码来源:test_nonlin.py

示例15: test_root_broyden1

# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import root [as 别名]
def test_root_broyden1(self):
        res = root(F, F.xin, method='broyden1',
                   options={'nit': 12, 'jac_options': {'alpha': 1}})
        assert_(nonlin.norm(res.x) < 1e-9)
        assert_(nonlin.norm(res.fun) < 1e-9) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:7,代码来源:test_nonlin.py


注:本文中的scipy.optimize.root方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。