本文整理汇总了Python中scipy.optimize.fmin_l_bfgs_b方法的典型用法代码示例。如果您正苦于以下问题:Python optimize.fmin_l_bfgs_b方法的具体用法?Python optimize.fmin_l_bfgs_b怎么用?Python optimize.fmin_l_bfgs_b使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.optimize
的用法示例。
在下文中一共展示了optimize.fmin_l_bfgs_b方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: global_optimization
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def global_optimization(grid, lower, upper, function_grid, function_scalar, function_scalar_gradient):
grid_values = function_grid(grid)
best = grid_values.argmin()
# We solve the optimization problem
X_initial = grid[ best : (best + 1), : ]
def objective(X):
X = casting(X)
X = X.reshape((1, grid.shape[ 1 ]))
value = function_scalar(X)
gradient_value = function_scalar_gradient(X).flatten()
return np.float(value), gradient_value.astype(np.float)
lbfgs_bounds = zip(lower.tolist(), upper.tolist())
x_optimal, y_opt, opt_info = spo.fmin_l_bfgs_b(objective, X_initial, bounds = list(lbfgs_bounds), iprint = 0, maxiter = 150)
x_optimal = x_optimal.reshape((1, grid.shape[ 1 ]))
return x_optimal, y_opt
示例2: _fit_start_params
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def _fit_start_params(self, order, method, start_ar_lags=None):
if method != 'css-mle': # use Hannan-Rissanen to get start params
start_params = self._fit_start_params_hr(order, start_ar_lags)
else: # use CSS to get start params
func = lambda params: -self.loglike_css(params)
#start_params = [.1]*(k_ar+k_ma+k_exog) # different one for k?
start_params = self._fit_start_params_hr(order, start_ar_lags)
if self.transparams:
start_params = self._invtransparams(start_params)
bounds = [(None,)*2]*sum(order)
mlefit = optimize.fmin_l_bfgs_b(func, start_params,
approx_grad=True, m=12,
pgtol=1e-7, factr=1e3,
bounds=bounds, iprint=-1)
start_params = mlefit[0]
if self.transparams:
start_params = self._transparams(start_params)
return start_params
示例3: global_optimization
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def global_optimization(grid, lower, upper, function_grid, function_scalar, function_scalar_gradient):
grid_values = function_grid(grid)
best = grid_values.argmin()
# We solve the optimization problem
X_initial = grid[ best : (best + 1), : ]
def objective(X):
X = casting(X)
X = X.reshape((1, grid.shape[ 1 ]))
value = function_scalar(X)
gradient_value = function_scalar_gradient(X).flatten()
return np.float(value), gradient_value.astype(np.float)
lbfgs_bounds = zip(lower.tolist(), upper.tolist())
x_optimal, y_opt, opt_info = spo.fmin_l_bfgs_b(objective, X_initial, bounds = lbfgs_bounds, iprint = 0, maxiter = 150)
x_optimal = x_optimal.reshape((1, grid.shape[ 1 ]))
return x_optimal, y_opt
示例4: test_l_bfgs_b
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def test_l_bfgs_b(self):
""" limited-memory bound-constrained BFGS algorithm
"""
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
self.grad, args=(),
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls == 5, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[0., -0.52489628, 0.48753042],
[0., -0.52489628, 0.48753042]],
atol=1e-14, rtol=1e-7)
示例5: test_l_bfgs_b
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def test_l_bfgs_b(self):
# limited-memory bound-constrained BFGS algorithm
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
self.grad, args=(),
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls == 5, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[0., -0.52489628, 0.48753042],
[0., -0.52489628, 0.48753042]],
atol=1e-14, rtol=1e-7)
示例6: test_minimize_l_bfgs_b_maxfun_interruption
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def test_minimize_l_bfgs_b_maxfun_interruption(self):
# gh-6162
f = optimize.rosen
g = optimize.rosen_der
values = []
x0 = np.ones(7) * 1000
def objfun(x):
value = f(x)
values.append(value)
return value
# Look for an interesting test case.
# Request a maxfun that stops at a particularly bad function
# evaluation somewhere between 100 and 300 evaluations.
low, medium, high = 30, 100, 300
optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high)
v, k = max((y, i) for i, y in enumerate(values[medium:]))
maxfun = medium + k
# If the minimization strategy is reasonable,
# the minimize() result should not be worse than the best
# of the first 30 function evaluations.
target = min(values[:low])
xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun)
assert_array_less(fmin, target)
示例7: lbfgsb
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def lbfgsb(variables, bounds, loss_fn, zero_grad_fn):
x, shapes, shapes_flat = vars_to_x(variables)
bounds_list = []
for var in variables:
lower, upper = bounds[var]
lower = lower.ravel()
upper = upper.ravel()
for i in range(lower.size):
bounds_list.append((lower[i], upper[i]))
def f(x):
x_to_vars(x, variables, shapes_flat, shapes)
loss = loss_fn()
zero_grad_fn()
loss.backward()
with torch.no_grad():
f = loss.detach().cpu().numpy().astype(np.float64)
g = np.stack([var.tensor.grad.detach().cpu().numpy().ravel() for var in variables]).astype(np.float64)
return f, g
x, f, d = spo.fmin_l_bfgs_b(f, x, bounds=bounds_list)
x_to_vars(x, variables, shapes_flat, shapes)
示例8: optimize
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def optimize(self, num_vars, objective_function, gradient_function=None,
variable_bounds=None, initial_point=None):
super().optimize(num_vars, objective_function, gradient_function,
variable_bounds, initial_point)
if gradient_function is None and self._max_evals_grouped > 1:
epsilon = self._options['epsilon']
gradient_function = Optimizer.wrap_function(Optimizer.gradient_num_diff,
(objective_function,
epsilon, self._max_evals_grouped))
approx_grad = bool(gradient_function is None)
sol, opt, info = sciopt.fmin_l_bfgs_b(objective_function,
initial_point, bounds=variable_bounds,
fprime=gradient_function,
approx_grad=approx_grad, **self._options)
return sol, opt, info['funcalls']
示例9: _fit_start_params
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def _fit_start_params(self, order, method, start_ar_lags=None):
if method != 'css-mle': # use Hannan-Rissanen to get start params
start_params = self._fit_start_params_hr(order, start_ar_lags)
else: # use CSS to get start params
func = lambda params: -self.loglike_css(params)
#start_params = [.1]*(k_ar+k_ma+k_exog) # different one for k?
start_params = self._fit_start_params_hr(order, start_ar_lags)
if self.transparams:
start_params = self._invtransparams(start_params)
bounds = [(None,)*2]*sum(order)
mlefit = optimize.fmin_l_bfgs_b(func, start_params,
approx_grad=True, m=12,
pgtol=1e-7, factr=1e3,
bounds=bounds, iprint=-1)
start_params = self._transparams(mlefit[0])
return start_params
示例10: styling
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def styling(self, content_image, style_image, n_iter):
content = Image.open(content_image).resize((self.width, self.height))
self.content = np.expand_dims(content, axis=0).astype(np.float32) # [1, height, width, 3]
style = Image.open(style_image).resize((self.width, self.height))
self.style = np.expand_dims(style, axis=0).astype(np.float32) # [1, height, width, 3]
x = np.copy(self.content) # initialize styled image from content
# repeat backpropagating to styled image
for i in range(n_iter):
x, min_val, info = fmin_l_bfgs_b(self._get_loss, x.flatten(), fprime=lambda x: self.flat_grads, maxfun=20)
x = x.clip(0., 255.)
print('(%i/%i) loss: %.1f' % (i+1, n_iter, min_val))
x = x.reshape((self.height, self.width, 3))
for i in range(1, 4):
x[:, :, -i] += self.vgg_mean[i - 1]
return x, self.content, self.style
示例11: bfgs
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def bfgs(self):
def ll(x):
x = x.reshape((self.K, self.L))
return self._ll(x)
def dll(x):
x = x.reshape((self.K, self.L))
result = self._dll(x)
result = result.reshape(self.K * self.L)
return result
Lambda = np.random.multivariate_normal(np.zeros(self.L),
(self.sigma ** 2) * np.identity(self.L), size=self.K)
Lambda = Lambda.reshape(self.K * self.L)
newLambda, fmin, res = optimize.fmin_l_bfgs_b(ll, Lambda, dll)
self.Lambda = newLambda.reshape((self.K, self.L))
示例12: calcM
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def calcM(f,xMin,xMax):
#first do a coarse grid to get ic
dx = np.linspace(xMin, xMax, 1000*1000)
ic = np.argmax(f(dx))
#now optimize
g = lambda x: -f(x)
M = fmin_l_bfgs_b(g,[dx[ic]],approx_grad=True,bounds=[(xMin,xMax)])
M = f(M[0])
return M
示例13: calcM
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def calcM(self):
'''
Calculate the maximum bound of the distribution over the
sampling interval.
'''
#first do a coarse grid to get ic
dx = np.linspace(self.xMin, self.xMax, 1000*1000)
ic = np.argmax(self.f(dx))
#now optimize
g = lambda x: -self.f(x)
M = fmin_l_bfgs_b(g,[dx[ic]],approx_grad=True,bounds=[(self.xMin,self.xMax)])
M = self.f(M[0])
return M
示例14: opt
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def opt(self, x_init, f_fp=None, f=None, fp=None):
"""
Run the optimizer
"""
rcstrings = ['Converged', 'Maximum number of f evaluations reached', 'Error']
assert f_fp != None, "BFGS requires f_fp"
opt_dict = {}
if self.xtol is not None:
print("WARNING: l-bfgs-b doesn't have an xtol arg, so I'm going to ignore it")
if self.ftol is not None:
print("WARNING: l-bfgs-b doesn't have an ftol arg, so I'm going to ignore it")
if self.gtol is not None:
opt_dict['pgtol'] = self.gtol
if self.bfgs_factor is not None:
opt_dict['factr'] = self.bfgs_factor
opt_result = optimize.fmin_l_bfgs_b(f_fp, x_init, maxfun=self.max_iters, maxiter=self.max_iters, **opt_dict)
self.x_opt = opt_result[0]
self.f_opt = f_fp(self.x_opt)[0]
self.funct_eval = opt_result[2]['funcalls']
self.status = rcstrings[opt_result[2]['warnflag']]
#a more helpful error message is available in opt_result in the Error case
if opt_result[2]['warnflag']==2: # pragma: no coverage, this is not needed to be covered
self.status = 'Error' + str(opt_result[2]['task'])
示例15: minimize_impl
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import fmin_l_bfgs_b [as 别名]
def minimize_impl(self, objective, gradient, inits, bounds):
if gradient is None:
approx_grad = True
else:
approx_grad = False
self.niter = 0
def callback(xs):
self.niter += 1
if self.verbose:
if self.niter % 50 == 0:
print('iter ', '\t'.join([x.name.split(':')[0] for x in variables]))
print('{: 4d} {}'.format(self.niter, '\t'.join(map(str, xs))))
if self.callback is not None:
self.callback(xs)
results = fmin_l_bfgs_b(
objective,
inits,
m=self.m,
fprime=gradient,
factr=self.factr,
pgtol=self.pgtol,
callback=callback,
approx_grad=approx_grad,
bounds=bounds,
)
ret = OptimizationResult()
ret.x = results[0]
ret.func = results[1]
ret.niter = results[2]['nit']
ret.calls = results[2]['funcalls']
ret.message = results[2]['task'].decode().lower()
ret.success = results[2]['warnflag'] == 0
return ret