本文整理汇总了Python中scipy.optimize.OptimizeResult方法的典型用法代码示例。如果您正苦于以下问题:Python optimize.OptimizeResult方法的具体用法?Python optimize.OptimizeResult怎么用?Python optimize.OptimizeResult使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.optimize
的用法示例。
在下文中一共展示了optimize.OptimizeResult方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: optimize
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def optimize(self, objectivefx, **kwargs):
"""
Optimize a given function f over a domain.
The optimizer class supports interruption. If during the optimization ctrl+c is pressed, the last best point is
returned.
The actual optimization routine is implemented in _optimize, to be implemented in subclasses.
:param objectivefx: callable, taking one argument: a 2D numpy array. The number of columns correspond to the
dimensionality of the input domain.
:return: OptimizeResult reporting the results.
"""
objective = ObjectiveWrapper(objectivefx, **self._wrapper_args)
try:
result = self._optimize(objective, **kwargs)
except KeyboardInterrupt:
result = OptimizeResult(x=objective._previous_x,
success=False,
message="Caught KeyboardInterrupt, returning last good value.")
result.x = np.atleast_2d(result.x)
result.nfev = objective.counter
return result
示例2: optimize
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def optimize(self, objectivefx, n_iter=20):
"""
Run Bayesian optimization for a number of iterations.
Before the loop is initiated, first all points retrieved by :meth:`~.optim.Optimizer.get_initial` are evaluated
on the objective and black-box constraints. These points are then added to the acquisition function
by calling :meth:`~.acquisition.Acquisition.set_data` (and hence, the underlying models).
Each iteration a new data point is selected for evaluation by optimizing an acquisition function. This point
updates the models.
:param objectivefx: (list of) expensive black-box objective and constraint functions. For evaluation, the
responses of all the expensive functions are aggregated column wise.
Unlike the typical :class:`~.optim.Optimizer` interface, these functions should not return gradients.
:param n_iter: number of iterations to run
:return: OptimizeResult object
"""
fxs = np.atleast_1d(objectivefx)
return super(BayesianOptimizer, self).optimize(lambda x: self._evaluate_objectives(x, fxs), n_iter=n_iter)
示例3: load
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def load(filename, **kwargs):
"""
Reconstruct a skopt optimization result from a file
persisted with skopt.dump.
.. note::
Notice that the loaded optimization result can be missing
the objective function (`.specs['args']['func']`) if `skopt.dump`
was called with `store_objective=False`.
Parameters
----------
filename : string or `pathlib.Path`
The path of the file from which to load the optimization result.
**kwargs : other keyword arguments
All other keyword arguments will be passed to `joblib.load`.
Returns
-------
res : `OptimizeResult`, scipy object
Reconstructed OptimizeResult instance.
"""
return load_(filename, **kwargs)
示例4: __init__
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def __init__(self, x0, minimizer, step_taking, accept_tests, disp=False):
self.x = np.copy(x0)
self.minimizer = minimizer
self.step_taking = step_taking
self.accept_tests = accept_tests
self.disp = disp
self.nstep = 0
# initialize return object
self.res = scipy.optimize.OptimizeResult()
self.res.minimization_failures = 0
# do initial minimization
minres = minimizer(self.x)
if not minres.success:
self.res.minimization_failures += 1
if self.disp:
print("warning: basinhopping: local minimization failure")
self.x = np.copy(minres.x)
self.energy = minres.fun
if self.disp:
print("basinhopping step %d: f %g" % (self.nstep, self.energy))
# initialize storage class
self.storage = Storage(minres)
if hasattr(minres, "nfev"):
self.res.nfev = minres.nfev
if hasattr(minres, "njev"):
self.res.njev = minres.njev
if hasattr(minres, "nhev"):
self.res.nhev = minres.nhev
示例5: fmin_minuit
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def fmin_minuit(func, x0, names=None, verbose=False):
inits = dict()
if verbose:
print_level = 2
else:
print_level = 0
if names is None:
names = map(lambda x: 'param' + str(x), range(len(x0)))
else:
assert(len(x0) == len(names))
for n, x in zip(names, x0):
inits[n] = x
# TODO use a method to set this correctly
inits['error_' + n] = 1
m = Minuit(Min_Func(func, names), print_level=print_level, errordef=1, **inits)
a, b = m.migrad()
return OptimizeResult(
x=m.values,
fun=a['fval'],
edm=a['edm'],
nfev=a['nfcn'],
is_valid=a['is_valid'],
has_valid_parameters=a['has_valid_parameters'],
)
示例6: _optimize
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def _optimize(self, objective):
points = self._get_eval_points()
evaluations = objective(points)
idx_best = np.argmin(evaluations, axis=0)
return OptimizeResult(x=points[idx_best, :],
success=True,
fun=evaluations[idx_best, :],
nfev=points.shape[0],
message="OK")
示例7: test_train_failure
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def test_train_failure(self, all_gps, params, mocker):
"""
Tests the case when 'L-BFGS-B' fails due to a linear algebra error and
training falls back to BFGS
"""
# Sets up mocker for scipy minimize. Note that we are mocking
# 'flare.gp.minimize' because of how the imports are done in gp
x_result = np.random.rand()
fun_result = np.random.rand()
jac_result = np.random.rand()
train_result = OptimizeResult(x=x_result, fun=fun_result,
jac=jac_result)
side_effects = [np.linalg.LinAlgError(), train_result]
mocker.patch('flare.gp.minimize', side_effect=side_effects)
two_body_gp = all_gps[True]
two_body_gp.set_L_alpha = mocker.Mock()
# Executes training
two_body_gp.algo = 'L-BFGS-B'
two_body_gp.train()
# Assert that everything happened as expected
assert(flare.gp.minimize.call_count == 2)
calls = flare.gp.minimize.call_args_list
args, kwargs = calls[0]
assert(kwargs['method'] == 'L-BFGS-B')
args, kwargs = calls[1]
assert(kwargs['method'] == 'BFGS')
two_body_gp.set_L_alpha.assert_called_once()
assert(two_body_gp.hyps == x_result)
assert(two_body_gp.likelihood == -1 * fun_result)
assert(two_body_gp.likelihood_gradient == -1 * jac_result)
示例8: test_custom
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def test_custom(self):
# This function comes from the documentation example.
def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = x0
besty = fun(x0)
funcalls = 1
niter = 0
improved = True
stop = False
while improved and not stop and niter < maxiter:
improved = False
niter += 1
for dim in range(np.size(x0)):
for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
testx = np.copy(bestx)
testx[dim] = s
testy = fun(testx, *args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback(bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break
return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
nfev=funcalls, success=(niter > 1))
x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
res = optimize.minimize(optimize.rosen, x0, method=custmin,
options=dict(stepsize=0.05))
assert_allclose(res.x, 1.0, rtol=1e-4, atol=1e-4)
示例9: test_minimize_scalar_custom
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def test_minimize_scalar_custom(self):
# This function comes from the documentation example.
def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = (bracket[1] + bracket[0]) / 2.0
besty = fun(bestx)
funcalls = 1
niter = 0
improved = True
stop = False
while improved and not stop and niter < maxiter:
improved = False
niter += 1
for testx in [bestx - stepsize, bestx + stepsize]:
testy = fun(testx, *args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback(bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break
return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
nfev=funcalls, success=(niter > 1))
res = optimize.minimize_scalar(self.fun, bracket=(0, 4), method=custmin,
options=dict(stepsize=0.05))
assert_allclose(res.x, self.solution, atol=1e-6)
示例10: setup_method
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def setup_method(self):
self.x0 = np.array(1)
self.f0 = 0
minres = OptimizeResult()
minres.x = self.x0
minres.fun = self.f0
self.storage = Storage(minres)
示例11: test_lower_f_accepted
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def test_lower_f_accepted(self):
new_minres = OptimizeResult()
new_minres.x = self.x0 + 1
new_minres.fun = self.f0 - 1
ret = self.storage.update(new_minres)
minres = self.storage.get_lowest()
assert_(self.x0 != minres.x)
assert_(self.f0 != minres.fun)
assert_(ret)
示例12: basinhopping
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def basinhopping(constraint_solve, constraint_check, variables, bounds, args):
x0, shapes, shapes_flat = vars_to_x(variables)
def loss_fn(x):
x_to_vars(x, variables, shapes_flat, shapes)
return constraint_solve.to_diffsat(cache=True).loss(args)
def local_optimization_step(fun, x0, *losargs, **loskwargs):
loss_before = loss_fn(x0)
inner_opt(constraint_solve, constraint_check, variables, bounds, args)
r = spo.OptimizeResult()
r.x, _, _ = vars_to_x(variables)
loss_after = constraint_solve.to_diffsat(cache=True).loss(args)
r.success = not (loss_before == loss_after and not constraint_check.to_diffsat(cache=True).satisfy(args))
r.fun = loss_after
return r
def check_basinhopping(x, f, accept):
if abs(f) <= 10 * args.eps_check:
x_, _, _ = vars_to_x(variables)
x_to_vars(x, variables, shapes_flat, shapes)
if constraint_check.to_diffsat(cache=True).satisfy(args):
return True
else:
x_to_vars(x_, variables, shapes_flat, shapes)
return False
minimizer_kwargs = {}
minimizer_kwargs['method'] = local_optimization_step
satisfied = constraint_check.to_diffsat(cache=True).satisfy(args)
if satisfied:
return True
spo.basinhopping(loss_fn, x0, niter=1000, minimizer_kwargs=minimizer_kwargs, callback=check_basinhopping,
T=args.basinhopping_T, stepsize=args.basinhopping_stepsize)
return constraint_check.to_diffsat(cache=True).satisfy(args)
示例13: fit
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def fit(self, method):
"""
Fits the copula with the Maximum Likelihood Estimator
Parameters
----------
method: {'ml', 'mpl'}
This will determine the variance estimate
Returns
-------
ndarray
Estimated parameters for the copula
"""
res: OptimizeResult = minimize(self.copula_log_lik, self.initial_params, **self.optim_options)
if not res['success']:
if self.verbose >= 1:
warn_no_convergence()
return
estimate = res['x']
self.copula.params = estimate
method = f"Maximum {'pseudo-' if method == 'mpl' else ''}likelihood"
self.copula.fit_smry = FitSummary(estimate, method, res['fun'], len(self.data), self.optim_options, res)
return estimate
示例14: fit
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def fit(self, X, y, sample_weight=None):
"""Fit non-negative linear model.
Parameters
----------
X : numpy array or sparse matrix of shape [n_samples, n_features]
Training data
y : numpy array of shape [n_samples,]
Target values
sample_weight : numpy array of shape [n_samples]
Individual weights for each sample
Returns
-------
self : returns an instance of self.
"""
X, y = check_X_y(X, y, y_numeric=True, multi_output=False)
if sample_weight is not None and np.atleast_1d(sample_weight).ndim > 1:
raise ValueError("Sample weights must be 1D array or scalar")
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X, y, fit_intercept=self.fit_intercept, normalize=self.normalize,
copy=self.copy_X, sample_weight=sample_weight)
if sample_weight is not None:
# Sample weight can be implemented via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
self.coef_, result = nnls(X, y.squeeze())
if np.all(self.coef_ == 0):
raise ConvergenceWarning("All coefficients estimated to be zero in"
" the non-negative least squares fit.")
self._set_intercept(X_offset, y_offset, X_scale)
self.opt_result_ = OptimizeResult(success=True, status=0, x=self.coef_,
fun=result)
return self
示例15: _int_spontaneous_raman
# 需要导入模块: from scipy import optimize [as 别名]
# 或者: from scipy.optimize import OptimizeResult [as 别名]
def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber, freq_array,
cr_raman_matrix, freq_diff, ase_bc, bn_array, temperature):
spontaneous_raman_scattering = OptimizeResult()
simulation = Simulation.get_simulation()
sim_params = simulation.sim_params
dx = sim_params.raman_params.space_resolution
h = ph.value('Planck constant')
kb = ph.value('Boltzmann constant')
power_ase = np.nan * np.ones(raman_matrix.shape)
int_pump = cumtrapz(raman_matrix, z_array, dx=dx, axis=1, initial=0)
for f_ind, f_ase in enumerate(freq_array):
cr_raman = cr_raman_matrix[f_ind, :]
vibrational_loss = f_ase / freq_array[:f_ind]
eta = 1 / (np.exp((h * freq_diff[f_ind, f_ind + 1:]) / (kb * temperature)) - 1)
int_fiber_loss = -alphap_fiber[f_ind] * z_array
int_raman_loss = np.sum((cr_raman[:f_ind] * vibrational_loss * int_pump[:f_ind, :].transpose()).transpose(),
axis=0)
int_raman_gain = np.sum((cr_raman[f_ind + 1:] * int_pump[f_ind + 1:, :].transpose()).transpose(), axis=0)
int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss
new_ase = np.sum((cr_raman[f_ind + 1:] * (1 + eta) * raman_matrix[f_ind + 1:, :].transpose()).transpose()
* h * f_ase * bn_array[f_ind], axis=0)
bc_evolution = ase_bc[f_ind] * np.exp(int_gain_loss)
ase_evolution = np.exp(int_gain_loss) * cumtrapz(new_ase *
np.exp(-int_gain_loss), z_array, dx=dx, initial=0)
power_ase[f_ind, :] = bc_evolution + ase_evolution
spontaneous_raman_scattering.x = 2 * power_ase
return spontaneous_raman_scattering