当前位置: 首页>>代码示例>>Python>>正文


Python ndimage.zoom方法代码示例

本文整理汇总了Python中scipy.ndimage.zoom方法的典型用法代码示例。如果您正苦于以下问题:Python ndimage.zoom方法的具体用法?Python ndimage.zoom怎么用?Python ndimage.zoom使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.zoom方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: predict_multiscale

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation, recurrence):
    """
    Predict an image by looking at it with different scales.
        We choose the "predict_whole_img" for the image with less than the original input size,
        for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
    """
    image = image.data
    N_, C_, H_, W_ = image.shape
    full_probs = np.zeros((H_, W_, classes))  
    for scale in scales:
        scale = float(scale)
        print("Predicting image scaled by %f" % scale)
        scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
        scaled_probs = predict_whole(net, scale_image, tile_size, recurrence)
        if flip_evaluation == True:
            flip_scaled_probs = predict_whole(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
            scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,::-1,:])
        full_probs += scaled_probs
    full_probs /= len(scales)
    return full_probs 
开发者ID:speedinghzl,项目名称:pytorch-segmentation-toolbox,代码行数:22,代码来源:evaluate.py

示例2: predict_multiscale

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation):
    """
    Predict an image by looking at it with different scales.
        We choose the "predict_whole_img" for the image with less than the original input size,
        for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
    """
    image = image.data
    N_, C_, H_, W_ = image.shape
    full_probs = np.zeros((H_, W_, classes))
    for scale in scales:
        scale = float(scale)
        print("Predicting image scaled by %f" % scale)
        scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
        scaled_probs = predict_whole(net, scale_image, tile_size)
        if flip_evaluation == True:
            flip_scaled_probs = predict_whole(net, scale_image[:, :, :, ::-1].copy(), tile_size)
            scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:, ::-1, :])
        full_probs += scaled_probs
    full_probs /= len(scales)
    return full_probs 
开发者ID:lxtGH,项目名称:Fast_Seg,代码行数:22,代码来源:val.py

示例3: clipped_zoom

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def clipped_zoom(img, zoom_factor):
    h = img.shape[0]
    # ceil crop height(= crop width)
    ch = int(np.ceil(h / zoom_factor))

    top = (h - ch) // 2
    img = scizoom(img[top:top + ch, top:top + ch], (zoom_factor, zoom_factor, 1), order=1)
    # trim off any extra pixels
    trim_top = (img.shape[0] - h) // 2

    return img[trim_top:trim_top + h, trim_top:trim_top + h]


# /////////////// End Distortion Helpers ///////////////


# /////////////// Distortions /////////////// 
开发者ID:hendrycks,项目名称:robustness,代码行数:19,代码来源:make_imagenet_c.py

示例4: generate

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def generate(values, nb_classes, batch_size, input_size, image_dir, anno_dir):
  while 1:
    random.shuffle(values)
    images, labels = update_inputs(batch_size=batch_size,
       input_size=input_size, num_classes=nb_classes)
    for i, d in enumerate(values):
      img = imresize(imread(os.path.join(image_dir, d['image']), mode='RGB'), input_size)
      y = imread(os.path.join(anno_dir, d['anno']), mode='L')
      h, w = input_size
      y = zoom(y, (1.*h/y.shape[0], 1.*w/y.shape[1]), order=1, prefilter=False)
      y = (np.arange(nb_classes) == y[:,:,None]).astype('float32')
      assert y.shape[2] == nb_classes
      images[i % batch_size] = img
      labels[i % batch_size] = y
      if (i + 1) % batch_size == 0:
        yield images, labels
        images, labels = update_inputs(batch_size=batch_size,
          input_size=input_size, num_classes=nb_classes) 
开发者ID:Vladkryvoruchko,项目名称:PSPNet-Keras-tensorflow,代码行数:20,代码来源:preprocessing.py

示例5: predict_multi_scale

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def predict_multi_scale(full_image, net, scales, sliding_evaluation, flip_evaluation):
    """Predict an image by looking at it with different scales."""
    classes = net.model.outputs[0].shape[3]
    full_probs = np.zeros((full_image.shape[0], full_image.shape[1], classes))
    h_ori, w_ori = full_image.shape[:2]
    for scale in scales:
        print("Predicting image scaled by %f" % scale)
        scaled_img = misc.imresize(full_image, size=scale, interp="bilinear")
        if sliding_evaluation:
            scaled_probs = predict_sliding(scaled_img, net, flip_evaluation)
        else:
            scaled_probs = net.predict(scaled_img, flip_evaluation)
        # scale probs up to full size
        h, w = scaled_probs.shape[:2]
        probs = ndimage.zoom(scaled_probs, (1.*h_ori/h, 1.*w_ori/w, 1.),order=1, prefilter=False)
        # visualize_prediction(probs)
        # integrate probs over all scales
        full_probs += probs
    full_probs /= len(scales)
    return full_probs 
开发者ID:Vladkryvoruchko,项目名称:PSPNet-Keras-tensorflow,代码行数:22,代码来源:pspnet-video.py

示例6: test_correct_results

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def test_correct_results(self, min_zoom, max_zoom, mode, align_corners, keep_size):
        key = "img"
        random_zoom = RandZoomd(
            key,
            prob=1.0,
            min_zoom=min_zoom,
            max_zoom=max_zoom,
            mode=mode,
            align_corners=align_corners,
            keep_size=keep_size,
        )
        random_zoom.set_random_state(1234)

        zoomed = random_zoom({key: self.imt[0]})
        expected = list()
        for channel in self.imt[0]:
            expected.append(zoom_scipy(channel, zoom=random_zoom._zoom, mode="nearest", order=0, prefilter=False))
        expected = np.stack(expected).astype(np.float32)
        np.testing.assert_allclose(expected, zoomed[key], atol=1.0) 
开发者ID:Project-MONAI,项目名称:MONAI,代码行数:21,代码来源:test_rand_zoomd.py

示例7: zoom

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def zoom(x: np.ndarray, scale_factor: AxesParams, axes: AxesLike = None, order: int = 1,
         fill_value: Union[float, Callable] = 0) -> np.ndarray:
    """
    Rescale ``x`` according to ``scale_factor`` along the ``axes``.

    Parameters
    ----------
    x
    scale_factor
    axes
        axes along which the tensor will be scaled. If None - the last ``len(shape)`` axes are used.
    order
        order of interpolation.
    fill_value
        value to fill past edges. If Callable (e.g. `numpy.min`) - ``fill_value(x)`` will be used.
    """
    scale_factor = fill_by_indices(np.ones(x.ndim, 'float64'), scale_factor, axes)
    if callable(fill_value):
        fill_value = fill_value(x)

    # remove an annoying warning
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', UserWarning)
        return ndimage.zoom(x, scale_factor, order=order, cval=fill_value) 
开发者ID:neuro-ml,项目名称:deep_pipe,代码行数:26,代码来源:shape_ops.py

示例8: zoom_to_shape

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def zoom_to_shape(x: np.ndarray, shape: AxesLike, axes: AxesLike = None, order: int = 1,
                  fill_value: Union[float, Callable] = 0) -> np.ndarray:
    """
    Rescale ``x`` to match ``shape`` along the ``axes``.

    Parameters
    ----------
    x
    shape
        final shape.
    axes
        axes along which the tensor will be scaled. If None - the last ``len(shape)`` axes are used.
    order
        order of interpolation.
    fill_value
        value to fill past edges. If Callable (e.g. `numpy.min`) - ``fill_value(x)`` will be used.
    """
    old_shape = np.array(x.shape, 'float64')
    new_shape = np.array(fill_by_indices(x.shape, shape, axes), 'float64')
    return zoom(x, new_shape / old_shape, order=order, fill_value=fill_value) 
开发者ID:neuro-ml,项目名称:deep_pipe,代码行数:22,代码来源:shape_ops.py

示例9: proportional_zoom_to_shape

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def proportional_zoom_to_shape(x: np.ndarray, shape: AxesLike, axes: AxesLike = None,
                               padding_values: Union[AxesParams, Callable] = 0, order: int = 1) -> np.ndarray:
    """
    Proportionally rescale ``x`` to fit ``shape`` along ``axes`` then pad it to that shape.

    Parameters
    ----------
    x
    shape
        final shape.
    axes
        axes along which ``x`` will be padded. If None - the last ``len(shape)`` axes are used.
    padding_values
        values to pad with.
    order
        order of interpolation.
    """
    axes = expand_axes(axes, shape)
    scale_factor = (np.array(shape, 'float64') / extract(x.shape, axes)).min()
    return pad_to_shape(zoom(x, scale_factor, axes, order), shape, axes, padding_values) 
开发者ID:neuro-ml,项目名称:deep_pipe,代码行数:22,代码来源:shape_ops.py

示例10: image_dataset_phase_2

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def image_dataset_phase_2(repository, image_number, x, y, feature_offsets, R_offsets, delta):
	img = makesize(snd.zoom(readimage(repository, image_number), delta), 1)
	(h, w) = img.shape
	mask = np.ones((h, w), 'bool')
	mask[:, 0] = 0
	mask[0, :] = 0
	mask[h - 1, :] = 0
	mask[:, w - 1] = 0
	(nroff, blc) = R_offsets.shape
	h -= 2
	w -= 2
	x += 1
	y += 1
	rep = np.zeros((nroff, 2))
	number = image_number
	xs = (x + R_offsets[:, 0]).astype('int')
	ys = (y + R_offsets[:, 1]).astype('int')
	rep[:, 0] = R_offsets[:, 0]
	rep[:, 1] = R_offsets[:, 1]
	dataset = dataset_from_coordinates(img, xs, ys, feature_offsets)
	return dataset, rep, number 
开发者ID:cytomine,项目名称:Cytomine-python-datamining,代码行数:23,代码来源:build_dmbl_model.py

示例11: agregation_phase_2

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def agregation_phase_2(repository, image_number, ip, probability_maps, reg, delta, feature_offsets, filter_size, beta, n_iterations):
	img = makesize(snd.zoom(readimage(repository, image_number), delta), 1)
	(h, w, nldms) = probability_maps.shape
	nldms -= 1
	mh = h - 1
	mw = w - 1
	for iteration in range(n_iterations):
		y, x = np.where(probability_maps[:, :, ip] >= beta * np.max(probability_maps[:, :, ip]))
		dataset = dataset_from_coordinates(img, x + 1, y + 1, feature_offsets)
		offsets = reg.predict(dataset)
		n_x = (x - offsets[:, 0]).clip(min=0, max=mw)
		n_y = (y - offsets[:, 1]).clip(min=0, max=mh)
		new_pmap = np.zeros((h, w))
		for i in range(n_x.size):
			new_pmap[n_y[i], n_x[i]] += probability_maps[y[i], x[i], ip]
		probability_maps[:, :, ip] = new_pmap
		probability_maps[0, :, ip] = 0
		probability_maps[:, 0, ip] = 0
		probability_maps[mh, :, ip] = 0
		probability_maps[:, mw, ip] = 0

	return filter_perso(probability_maps[:, :, ip], filter_size) 
开发者ID:cytomine,项目名称:Cytomine-python-datamining,代码行数:24,代码来源:landmark_dmbl_predict.py

示例12: test_uint64_max

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def test_uint64_max():
    # Test interpolation respects uint64 max.  Reported to fail at least on
    # win32 (due to the 32 bit visual C compiler using signed int64 when
    # converting between uint64 to double) and Debian on s390x.
    # Interpolation is always done in double precision floating point, so we
    # use the largest uint64 value for which int(float(big)) still fits in
    # a uint64.
    big = 2**64-1025
    arr = np.array([big, big, big], dtype=np.uint64)
    # Tests geometric transform (map_coordinates, affine_transform)
    inds = np.indices(arr.shape) - 0.1
    x = ndimage.map_coordinates(arr, inds)
    assert_equal(x[1], int(float(big)))
    assert_equal(x[2], int(float(big)))
    # Tests zoom / shift
    x = ndimage.shift(arr, 0.1)
    assert_equal(x[1], int(float(big)))
    assert_equal(x[2], int(float(big))) 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:20,代码来源:test_datatypes.py

示例13: deep_dream

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def deep_dream(image, model, iterations, lr, octave_scale, num_octaves):
    """ Main deep dream method """
    image = preprocess(image).unsqueeze(0).cpu().data.numpy()

    # Extract image representations for each octave
    octaves = [image]
    for _ in range(num_octaves - 1):
        octaves.append(nd.zoom(octaves[-1], (1, 1, 1 / octave_scale, 1 / octave_scale), order=1))

    detail = np.zeros_like(octaves[-1])
    for octave, octave_base in enumerate(tqdm.tqdm(octaves[::-1], desc="Dreaming")):
        if octave > 0:
            # Upsample detail to new octave dimension
            detail = nd.zoom(detail, np.array(octave_base.shape) / np.array(detail.shape), order=1)
        # Add deep dream detail from previous octave to new base
        input_image = octave_base + detail
        # Get new deep dream image
        dreamed_image = dream(input_image, model, iterations, lr)
        # Extract deep dream details
        detail = dreamed_image - octave_base

    return deprocess(dreamed_image) 
开发者ID:eriklindernoren,项目名称:PyTorch-Deep-Dream,代码行数:24,代码来源:deep_dream.py

示例14: _clipped_zoom_no_scipy_warning

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def _clipped_zoom_no_scipy_warning(img, zoom_factor):
    from scipy.ndimage import zoom as scizoom

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", ".*output shape of zoom.*")

        # clipping along the width dimension:
        ch0 = int(np.ceil(img.shape[0] / float(zoom_factor)))
        top0 = (img.shape[0] - ch0) // 2

        # clipping along the height dimension:
        ch1 = int(np.ceil(img.shape[1] / float(zoom_factor)))
        top1 = (img.shape[1] - ch1) // 2

        img = scizoom(img[top0:top0 + ch0, top1:top1 + ch1],
                      (zoom_factor, zoom_factor, 1), order=1)

        return img 
开发者ID:aleju,项目名称:imgaug,代码行数:20,代码来源:imgcorruptlike.py

示例15: im_rescale

# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import zoom [as 别名]
def im_rescale(img, scale_factor):
    zoomed_img = np.zeros_like(img, dtype=img.dtype)
    zoomed = skimage.transform.rescale(img, scale_factor)

    if scale_factor >= 1.0:
        shift_x = (zoomed.shape[0] - img.shape[0]) // 2
        shift_y = (zoomed.shape[1] - img.shape[1]) // 2
        zoomed_img[:,:] = zoomed[shift_x:shift_x+img.shape[0], shift_y:shift_y+img.shape[1]]
    else:
        shift_x = (img.shape[0] - zoomed.shape[0]) // 2
        shift_y = (img.shape[1] - zoomed.shape[1]) // 2
        zoomed_img[shift_x:shift_x+zoomed.shape[0], shift_y:shift_y+zoomed.shape[1]] = zoomed

    return zoomed_img


# this old version uses ndimage zoom which is unreliable 
开发者ID:benanne,项目名称:kaggle-galaxies,代码行数:19,代码来源:load_data.py


注:本文中的scipy.ndimage.zoom方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。