本文整理汇总了Python中scipy.ndimage.median_filter方法的典型用法代码示例。如果您正苦于以下问题:Python ndimage.median_filter方法的具体用法?Python ndimage.median_filter怎么用?Python ndimage.median_filter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.ndimage
的用法示例。
在下文中一共展示了ndimage.median_filter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: prepare_n_mnist
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def prepare_n_mnist(filename, is_filter, num_spikes, step_factor=1):
"""Creates images from the specified n mnist recording
filename: path to the recording
is_filter: True if median filtering should be applied to the constructed image
num_spikes: number of unique spikes per image
step_factor: proportional amount to shift before generating the next image
1 would result in no overlapping events between images
0.6 would result in the next image overlapping with 40% of the previous image
returns: list of images, where each image is a 2d numpy array (height, width)
"""
td = ev.read_dataset(filename)
#td.show_td(100)
td.data = stabilize(td)
td.data = td.extract_roi([3, 3], [28, 28], True)
images = make_td_images(td, num_spikes, step_factor)
if is_filter:
images = ndimage.median_filter(images, 3)
#for image in images:
# cv2.imshow('img', image)
# cv2.waitKey(70)
return images
示例2: MedianFilter
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def MedianFilter(in_dem, kernel_size=3, out_file=None):
print("Median filtering ...")
start_time = time.time()
dem = rd.LoadGDAL(in_dem)
no_data = dem.no_data
projection = dem.projection
geotransform = dem.geotransform
med = ndimage.median_filter(dem, size=kernel_size)
med = np2rdarray(med, no_data, projection, geotransform)
print("Run time: {:.4f} seconds".format(time.time() - start_time))
if out_file is not None:
print("Saving dem ...")
rd.SaveGDAL(out_file, med)
return out_file
return med
# Gaussian filter
示例3: test_rank12
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def test_rank12(self):
expected = [[3, 3, 2, 4, 4],
[3, 5, 2, 5, 1],
[5, 5, 8, 3, 5]]
footprint = [[1, 0, 1], [0, 1, 0]]
for type in self.types:
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]], type)
output = ndimage.rank_filter(array, 1,
footprint=footprint)
assert_array_almost_equal(expected, output)
output = ndimage.percentile_filter(array, 50.0,
footprint=footprint)
assert_array_almost_equal(expected, output)
output = ndimage.median_filter(array,
footprint=footprint)
assert_array_almost_equal(expected, output)
示例4: filter
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def filter(self, signal):
"""Filter a given signal with a choice of filter type (self.lres_filter).
"""
signal = signal.copy()
filter_size = [1, self.downsamp_t*2-1, self.downsamp_xz*2-1, self.downsamp_xz*2-1]
if self.lres_filter == 'none' or (not self.lres_filter):
output = signal
elif self.lres_filter == 'gaussian':
sigma = [0, int(self.downsamp_t/2), int(self.downsamp_xz/2), int(self.downsamp_xz/2)]
output = ndimage.gaussian_filter(signal, sigma=sigma)
elif self.lres_filter == 'uniform':
output = ndimage.uniform_filter(signal, size=filter_size)
elif self.lres_filter == 'median':
output = ndimage.median_filter(signal, size=filter_size)
elif self.lres_filter == 'maximum':
output = ndimage.maximum_filter(signal, size=filter_size)
else:
raise NotImplementedError(
"lres_filter must be one of none/gaussian/uniform/median/maximum")
return output
示例5: test_rank12
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def test_rank12(self):
expected = [[3, 3, 2, 4, 4],
[3, 5, 2, 5, 1],
[5, 5, 8, 3, 5]]
footprint = [[1, 0, 1], [0, 1, 0]]
for type_ in self.types:
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]], type_)
output = ndimage.rank_filter(array, 1, footprint=footprint)
assert_array_almost_equal(expected, output)
output = ndimage.percentile_filter(array, 50.0,
footprint=footprint)
assert_array_almost_equal(expected, output)
output = ndimage.median_filter(array, footprint=footprint)
assert_array_almost_equal(expected, output)
示例6: find_jumps2
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def find_jumps2(self,ds,threshold=30000):
self._prepare_find_jumps()
ds = self._hf[ds]
offset=ds[0]
# first we remove a bit of noise
#flt = gaussian_filter1d(ds,10)
flt = median_filter(ds,size=10)
#flt = ds
# the sobel filter finds the "jumps"
sb=sobel(flt)
for i in sb:
self.qps_jpn_hight.append(float(i))
for i in flt: self.qps_jpn_spec.append(float(i))
"""
for i in xrange(flt.shape[0]-1):
if(abs(sb[i])>threshold):
offset -= sb[i]
self.qps_jpn_spec.append(float(flt[i]-offset))
else:
self.qps_jpn_spec.append(float(flt[i]-offset))
"""
#for i in sb
示例7: _background_removal_single_frame_median
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def _background_removal_single_frame_median(frame, footprint=19):
"""Background removal using median filter.
Parameters
----------
frame : NumPy 2D array
footprint : float
Returns
-------
background_removed : Numpy 2D array
Examples
--------
>>> import pyxem.utils.dask_tools as dt
>>> s = pxm.dummy_data.dummy_data.get_cbed_signal()
>>> s_rem = dt._background_removal_single_frame_median(s.data[0, 0])
"""
bg_subtracted = frame - ndi.median_filter(frame, size=footprint)
return bg_subtracted
示例8: filter
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def filter(self, size: NumberLike=0.05, kind: str='median'):
"""Filter the profile.
Parameters
----------
size : float, int
Size of the median filter to apply.
If a float, the size is the ratio of the length. Must be in the range 0-1.
E.g. if size=0.1 for a 1000-element array, the filter will be 100 elements.
If an int, the filter is the size passed.
kind : {'median', 'gaussian'}
The kind of filter to apply. If gaussian, `size` is the sigma value.
"""
if isinstance(size, float):
if 0 < size < 1:
size = int(round(len(self.values)*size))
size = max(size, 1)
else:
raise TypeError("Float was passed but was not between 0 and 1")
if kind == 'median':
self.values = ndimage.median_filter(self.values, size=size)
elif kind == 'gaussian':
self.values = ndimage.gaussian_filter(self.values, sigma=size)
示例9: filter
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def filter(self, size: Union[float, int]=0.05, kind: str='median'):
"""Filter the profile.
Parameters
----------
size : int, float
Size of the median filter to apply.
If a float, the size is the ratio of the length. Must be in the range 0-1.
E.g. if size=0.1 for a 1000-element array, the filter will be 100 elements.
If an int, the filter is the size passed.
kind : {'median', 'gaussian'}
The kind of filter to apply. If gaussian, *size* is the sigma value.
"""
if isinstance(size, float):
if 0 < size < 1:
size *= len(self.array)
size = max(size, 1)
else:
raise TypeError("Float was passed but was not between 0 and 1")
if kind == 'median':
self.array = ndimage.median_filter(self.array, size=size)
elif kind == 'gaussian':
self.array = ndimage.gaussian_filter(self.array, sigma=size)
示例10: prepare_n_mnist_continuous
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def prepare_n_mnist_continuous(filename, is_filter, is_normalize=False):
"""Creates image with pixel values indicating probability of a spike
filename: path to the recording
is_filter: True if median filtering should be applied to the constructed image
is_normalize: If True, the probabilities will be normalized to make the image more obvious
returns: image (2d numpy array (height, width))
"""
td = ev.read_dataset(filename)
#td.show_td(100)
td.data = stabilize(td)
td.data = td.extract_roi([0, 0], [28, 28], True)
#td.data = apply_tracking1(td)
#td.data = apply_tracking2(td)
#td.data = apply_tracking3(td)
#td.data = td.extract_roi([3, 3], [28, 28], True)
image = make_td_probability_image(td, 9, is_normalize)
if is_filter:
image = ndimage.median_filter(image, 3)
#cv2.imshow('img', image)
#cv2.waitKey(1)
return image
示例11: test_rank01
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def test_rank01(self):
array = numpy.array([1, 2, 3, 4, 5])
output = ndimage.rank_filter(array, 1, size=2)
assert_array_almost_equal(array, output)
output = ndimage.percentile_filter(array, 100, size=2)
assert_array_almost_equal(array, output)
output = ndimage.median_filter(array, 2)
assert_array_almost_equal(array, output)
示例12: test_rank02
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def test_rank02(self):
array = numpy.array([1, 2, 3, 4, 5])
output = ndimage.rank_filter(array, 1, size=[3])
assert_array_almost_equal(array, output)
output = ndimage.percentile_filter(array, 50, size=3)
assert_array_almost_equal(array, output)
output = ndimage.median_filter(array, (3,))
assert_array_almost_equal(array, output)
示例13: test_rank04
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def test_rank04(self):
array = numpy.array([3, 2, 5, 1, 4])
expected = [3, 3, 2, 4, 4]
output = ndimage.rank_filter(array, 1, size=3)
assert_array_almost_equal(expected, output)
output = ndimage.percentile_filter(array, 50, size=3)
assert_array_almost_equal(expected, output)
output = ndimage.median_filter(array, size=3)
assert_array_almost_equal(expected, output)
示例14: test_rank08
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def test_rank08(self):
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]])
expected = [[3, 3, 2, 4, 4],
[5, 5, 5, 4, 4],
[5, 6, 7, 5, 5]]
output = ndimage.percentile_filter(array, 50.0,
size=(2, 3))
assert_array_almost_equal(expected, output)
output = ndimage.rank_filter(array, 3, size=(2, 3))
assert_array_almost_equal(expected, output)
output = ndimage.median_filter(array, size=(2, 3))
assert_array_almost_equal(expected, output)
示例15: test_rank08
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import median_filter [as 别名]
def test_rank08(self):
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]])
expected = [[3, 3, 2, 4, 4],
[5, 5, 5, 4, 4],
[5, 6, 7, 5, 5]]
output = ndimage.percentile_filter(array, 50.0, size=(2, 3))
assert_array_almost_equal(expected, output)
output = ndimage.rank_filter(array, 3, size=(2, 3))
assert_array_almost_equal(expected, output)
output = ndimage.median_filter(array, size=(2, 3))
assert_array_almost_equal(expected, output)