当前位置: 首页>>代码示例>>Python>>正文


Python scipy.ndimage方法代码示例

本文整理汇总了Python中scipy.ndimage方法的典型用法代码示例。如果您正苦于以下问题:Python scipy.ndimage方法的具体用法?Python scipy.ndimage怎么用?Python scipy.ndimage使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy的用法示例。


在下文中一共展示了scipy.ndimage方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: predict_multiscale

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation, recurrence):
    """
    Predict an image by looking at it with different scales.
        We choose the "predict_whole_img" for the image with less than the original input size,
        for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
    """
    image = image.data
    N_, C_, H_, W_ = image.shape
    full_probs = np.zeros((H_, W_, classes))  
    for scale in scales:
        scale = float(scale)
        print("Predicting image scaled by %f" % scale)
        scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
        scaled_probs = predict_whole(net, scale_image, tile_size, recurrence)
        if flip_evaluation == True:
            flip_scaled_probs = predict_whole(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
            scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,::-1,:])
        full_probs += scaled_probs
    full_probs /= len(scales)
    return full_probs 
开发者ID:speedinghzl,项目名称:pytorch-segmentation-toolbox,代码行数:22,代码来源:evaluate.py

示例2: bwdist

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def bwdist(bwvol):
    """
    positive distance transform from positive entries in logical image

    Parameters
    ----------
    bwvol : nd array
        The logical volume

    Returns
    -------
    possdtrf : nd array
        the positive distance transform

    See Also
    --------
    bw2sdtrf
    """

    # reverse volume to run scipy function
    revbwvol = np.logical_not(bwvol)

    # get distance
    return scipy.ndimage.morphology.distance_transform_edt(revbwvol) 
开发者ID:voxelmorph,项目名称:voxelmorph,代码行数:26,代码来源:ndutils.py

示例3: predict_multiscale

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation, recurrence):
    """
    Predict an image by looking at it with different scales.
        We choose the "predict_whole_img" for the image with less than the original input size,
        for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
    """
    image = image.data
    N_, C_, H_, W_ = image.shape
    full_probs = np.zeros((H_, W_, classes))  
    for scale in scales:
        scale = float(scale)
        #print("Predicting image scaled by %f" % scale)
        scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
        scaled_probs = predict_whole(net, scale_image, tile_size, recurrence)
        if flip_evaluation == True:
            flip_scaled_probs = predict_whole(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
            scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,::-1,:])
        full_probs += scaled_probs
    full_probs /= len(scales)
    return full_probs 
开发者ID:irfanICMLL,项目名称:structure_knowledge_distillation,代码行数:22,代码来源:evaluate.py

示例4: scipy_conv_c01b

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def scipy_conv_c01b(self, images, filters):
        """
        Emulate c01b convolution with scipy
        """
        assert images.ndim == 4
        assert filters.ndim == 4
        in_chans, rows, cols, bs = images.shape
        in_chans_, rows_, cols_, out_chans = filters.shape
        assert in_chans_ == in_chans

        out_bc01 = [
            [sum(scipy.ndimage.filters.convolve(images[c, :, :, b],
                                                filters[c, ::-1, ::-1, i])
                 for c in xrange(in_chans))
             for i in xrange(out_chans)]
            for b in xrange(bs)]
        out_c01b = numpy.array(out_bc01).transpose(1, 2, 3, 0)
        return out_c01b 
开发者ID:zchengquan,项目名称:TextDetector,代码行数:20,代码来源:test_conv2d_c01b.py

示例5: test_binary_ops

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def test_binary_ops(funcname,
                    input,
                    structure,
                    origin):
    da_func = getattr(da_ndm, funcname)
    sp_func = getattr(spnd, funcname)

    da_result = da_func(
        input,
        structure=structure,
        origin=origin
    )

    sp_result = sp_func(
        input,
        structure=structure,
        origin=origin
    )

    dau.assert_eq(sp_result, da_result) 
开发者ID:dask,项目名称:dask-image,代码行数:22,代码来源:test_ndmorph.py

示例6: test_binary_ops_iter

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def test_binary_ops_iter(funcname,
                         input,
                         structure,
                         iterations,
                         origin):
    da_func = getattr(da_ndm, funcname)
    sp_func = getattr(spnd, funcname)

    da_result = da_func(
        input,
        structure=structure,
        iterations=iterations,
        origin=origin
    )

    sp_result = sp_func(
        input,
        structure=structure,
        iterations=iterations,
        origin=origin
    )

    dau.assert_eq(sp_result, da_result) 
开发者ID:dask,项目名称:dask-image,代码行数:25,代码来源:test_ndmorph.py

示例7: applyFilter

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def applyFilter():
    global imageRaw

    # Repeat array four times for Lepton2
    if leptonVersion == 0:
        array2d = leptonValues.reshape(60, 80)
        array2dBig = array2d.repeat(4, axis=0).repeat(4, axis=1)
        imageRaw = numpy.transpose(array2dBig)

    # Repeat array two times for Lepton3
    else:
        array2d = leptonValues.reshape(120, 160)
        array2dBig = array2d.repeat(2, axis=0).repeat(2, axis=1)
        imageRaw = numpy.transpose(array2dBig)

    # Apply the gaussian blur filter
    if filterType == 1:
        imageRaw = scipy.ndimage.filters.gaussian_filter(imageRaw, 1.33, mode='nearest')
    # Apply box blur filter
    if filterType == 2:
        imageRaw = scipy.ndimage.filters.uniform_filter(imageRaw, 3)


# Converts the Lepton raw values to RGB colors 
开发者ID:maxritter,项目名称:DIY-Thermocam,代码行数:26,代码来源:ThermalViewer.py

示例8: __call__

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def __call__(self, image):
        angle = self.random_state.uniform(
            self.angle_range[0], self.angle_range[1])
        if isinstance(image, np.ndarray):
            mi, ma = image.min(), image.max()
            image = scipy.ndimage.interpolation.rotate(
                image, angle, reshape=False, axes=self.axes, mode=self.mode)
            return np.clip(image, mi, ma)
        elif isinstance(image, Image.Image):
            return image.rotate(angle)
        else:
            raise Exception('unsupported type') 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:14,代码来源:myImageTransformations.py

示例9: transform_array

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def transform_array(self, X, y, w):
    """Transform the data in a set of (X, y, w) arrays."""
    from PIL import Image
    images = [scipy.ndimage.imread(x, mode='RGB') for x in X]
    images = [Image.fromarray(x).resize(self.size) for x in images]
    return np.array(images), y, w 
开发者ID:deepchem,项目名称:deepchem,代码行数:8,代码来源:transformers.py

示例10: rotate

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def rotate(self, angle=0):
    """ Rotates the image

    Parameters
    ----------
    angle: float (default = 0 i.e no rotation)
	Denotes angle by which the image should be rotated (in Degrees)

    Returns
    ----------
    The rotated imput array
    """
    return scipy.ndimage.rotate(self.Image, angle) 
开发者ID:deepchem,项目名称:deepchem,代码行数:15,代码来源:transformers.py

示例11: gaussian_blur

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def gaussian_blur(self, sigma=0.2):
    """ Adds gaussian noise to the image
          Parameters:
            sigma - std dev. of the gaussian distribution
    """
    return scipy.ndimage.gaussian_filter(self.Image, sigma) 
开发者ID:deepchem,项目名称:deepchem,代码行数:8,代码来源:transformers.py

示例12: shift

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def shift(self, width, height, mode='constant', order=3):
    """Shifts the image
        Parameters:
          width - amount of width shift(positive values shift image right )
          height - amount of height shift(positive values shift image lower)
          mode - Points outside the boundaries of the input are filled according to the given mode
          (‘constant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’
          order - The order of the spline interpolation, default is 3. The order has to be in the range 0-5.
          """
    if len(self.Image.shape) == 2:
      return scipy.ndimage.shift(
          self.Image, [height, width], order=order, mode=mode)
    if len(self.Image.shape == 3):
      return scipy.ndimage.shift(
          self.Image, [height, width, 0], order=order, mode=mode) 
开发者ID:deepchem,项目名称:deepchem,代码行数:17,代码来源:transformers.py

示例13: apply_transform

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def apply_transform(x,
                    transform_matrix,
                    channel_axis=0,
                    fill_mode='nearest',
                    cval=0.):
  """Apply the image transformation specified by a matrix.

  Arguments:
      x: 2D numpy array, single image.
      transform_matrix: Numpy array specifying the geometric transformation.
      channel_axis: Index of axis for channels in the input tensor.
      fill_mode: Points outside the boundaries of the input
          are filled according to the given mode
          (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
      cval: Value used for points outside the boundaries
          of the input if `mode='constant'`.

  Returns:
      The transformed version of the input.
  """
  x = np.rollaxis(x, channel_axis, 0)
  final_affine_matrix = transform_matrix[:2, :2]
  final_offset = transform_matrix[:2, 2]
  channel_images = [
      ndi.interpolation.affine_transform(
          x_channel,
          final_affine_matrix,
          final_offset,
          order=0,
          mode=fill_mode,
          cval=cval) for x_channel in x
  ]
  x = np.stack(channel_images, axis=0)
  x = np.rollaxis(x, 0, channel_axis + 1)
  return x 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:37,代码来源:image.py

示例14: transform_array

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def transform_array(self, X, y, w):
    """Transform the data in a set of (X, y, w) arrays."""
    images = [scipy.ndimage.imread(x, mode='RGB') for x in X]
    images = [scipy.misc.imresize(x, size=self.size) for x in images]
    return np.array(images), y, w 
开发者ID:simonfqy,项目名称:PADME,代码行数:7,代码来源:transformers.py

示例15: rotation

# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def rotation(x, rg=20, is_random=False, row_index=0, col_index=1, channel_index=2,
                    fill_mode='nearest', cval=0.):
    """Rotate an image randomly or non-randomly.

    Parameters
    -----------
    x : numpy array
        An image with dimension of [row, col, channel] (default).
    rg : int or float
        Degree to rotate, usually 0 ~ 180.
    is_random : boolean, default False
        If True, randomly rotate.
    row_index, col_index, channel_index : int
        Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0).
    fill_mode : string
        Method to fill missing pixel, default ‘nearest’, more options ‘constant’, ‘reflect’ or ‘wrap’

        - `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`_
    cval : scalar, optional
        Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0

        - `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`_

    Examples
    ---------
    >>> x --> [row, col, 1] greyscale
    >>> x = rotation(x, rg=40, is_random=False)
    >>> tl.visualize.frame(x[:,:,0], second=0.01, saveable=True, name='temp',cmap='gray')
    """
    if is_random:
        theta = np.pi / 180 * np.random.uniform(-rg, rg)
    else:
        theta = np.pi /180 * rg
    rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
                                [np.sin(theta), np.cos(theta), 0],
                                [0, 0, 1]])

    h, w = x.shape[row_index], x.shape[col_index]
    transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
    x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval)
    return x 
开发者ID:zjuela,项目名称:LapSRN-tensorflow,代码行数:43,代码来源:prepro.py


注:本文中的scipy.ndimage方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。