本文整理汇总了Python中scipy.ndimage方法的典型用法代码示例。如果您正苦于以下问题:Python scipy.ndimage方法的具体用法?Python scipy.ndimage怎么用?Python scipy.ndimage使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy
的用法示例。
在下文中一共展示了scipy.ndimage方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: predict_multiscale
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation, recurrence):
"""
Predict an image by looking at it with different scales.
We choose the "predict_whole_img" for the image with less than the original input size,
for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
"""
image = image.data
N_, C_, H_, W_ = image.shape
full_probs = np.zeros((H_, W_, classes))
for scale in scales:
scale = float(scale)
print("Predicting image scaled by %f" % scale)
scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
scaled_probs = predict_whole(net, scale_image, tile_size, recurrence)
if flip_evaluation == True:
flip_scaled_probs = predict_whole(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,::-1,:])
full_probs += scaled_probs
full_probs /= len(scales)
return full_probs
示例2: bwdist
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def bwdist(bwvol):
"""
positive distance transform from positive entries in logical image
Parameters
----------
bwvol : nd array
The logical volume
Returns
-------
possdtrf : nd array
the positive distance transform
See Also
--------
bw2sdtrf
"""
# reverse volume to run scipy function
revbwvol = np.logical_not(bwvol)
# get distance
return scipy.ndimage.morphology.distance_transform_edt(revbwvol)
示例3: predict_multiscale
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation, recurrence):
"""
Predict an image by looking at it with different scales.
We choose the "predict_whole_img" for the image with less than the original input size,
for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
"""
image = image.data
N_, C_, H_, W_ = image.shape
full_probs = np.zeros((H_, W_, classes))
for scale in scales:
scale = float(scale)
#print("Predicting image scaled by %f" % scale)
scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
scaled_probs = predict_whole(net, scale_image, tile_size, recurrence)
if flip_evaluation == True:
flip_scaled_probs = predict_whole(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,::-1,:])
full_probs += scaled_probs
full_probs /= len(scales)
return full_probs
示例4: scipy_conv_c01b
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def scipy_conv_c01b(self, images, filters):
"""
Emulate c01b convolution with scipy
"""
assert images.ndim == 4
assert filters.ndim == 4
in_chans, rows, cols, bs = images.shape
in_chans_, rows_, cols_, out_chans = filters.shape
assert in_chans_ == in_chans
out_bc01 = [
[sum(scipy.ndimage.filters.convolve(images[c, :, :, b],
filters[c, ::-1, ::-1, i])
for c in xrange(in_chans))
for i in xrange(out_chans)]
for b in xrange(bs)]
out_c01b = numpy.array(out_bc01).transpose(1, 2, 3, 0)
return out_c01b
示例5: test_binary_ops
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def test_binary_ops(funcname,
input,
structure,
origin):
da_func = getattr(da_ndm, funcname)
sp_func = getattr(spnd, funcname)
da_result = da_func(
input,
structure=structure,
origin=origin
)
sp_result = sp_func(
input,
structure=structure,
origin=origin
)
dau.assert_eq(sp_result, da_result)
示例6: test_binary_ops_iter
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def test_binary_ops_iter(funcname,
input,
structure,
iterations,
origin):
da_func = getattr(da_ndm, funcname)
sp_func = getattr(spnd, funcname)
da_result = da_func(
input,
structure=structure,
iterations=iterations,
origin=origin
)
sp_result = sp_func(
input,
structure=structure,
iterations=iterations,
origin=origin
)
dau.assert_eq(sp_result, da_result)
示例7: applyFilter
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def applyFilter():
global imageRaw
# Repeat array four times for Lepton2
if leptonVersion == 0:
array2d = leptonValues.reshape(60, 80)
array2dBig = array2d.repeat(4, axis=0).repeat(4, axis=1)
imageRaw = numpy.transpose(array2dBig)
# Repeat array two times for Lepton3
else:
array2d = leptonValues.reshape(120, 160)
array2dBig = array2d.repeat(2, axis=0).repeat(2, axis=1)
imageRaw = numpy.transpose(array2dBig)
# Apply the gaussian blur filter
if filterType == 1:
imageRaw = scipy.ndimage.filters.gaussian_filter(imageRaw, 1.33, mode='nearest')
# Apply box blur filter
if filterType == 2:
imageRaw = scipy.ndimage.filters.uniform_filter(imageRaw, 3)
# Converts the Lepton raw values to RGB colors
示例8: __call__
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def __call__(self, image):
angle = self.random_state.uniform(
self.angle_range[0], self.angle_range[1])
if isinstance(image, np.ndarray):
mi, ma = image.min(), image.max()
image = scipy.ndimage.interpolation.rotate(
image, angle, reshape=False, axes=self.axes, mode=self.mode)
return np.clip(image, mi, ma)
elif isinstance(image, Image.Image):
return image.rotate(angle)
else:
raise Exception('unsupported type')
示例9: transform_array
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def transform_array(self, X, y, w):
"""Transform the data in a set of (X, y, w) arrays."""
from PIL import Image
images = [scipy.ndimage.imread(x, mode='RGB') for x in X]
images = [Image.fromarray(x).resize(self.size) for x in images]
return np.array(images), y, w
示例10: rotate
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def rotate(self, angle=0):
""" Rotates the image
Parameters
----------
angle: float (default = 0 i.e no rotation)
Denotes angle by which the image should be rotated (in Degrees)
Returns
----------
The rotated imput array
"""
return scipy.ndimage.rotate(self.Image, angle)
示例11: gaussian_blur
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def gaussian_blur(self, sigma=0.2):
""" Adds gaussian noise to the image
Parameters:
sigma - std dev. of the gaussian distribution
"""
return scipy.ndimage.gaussian_filter(self.Image, sigma)
示例12: shift
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def shift(self, width, height, mode='constant', order=3):
"""Shifts the image
Parameters:
width - amount of width shift(positive values shift image right )
height - amount of height shift(positive values shift image lower)
mode - Points outside the boundaries of the input are filled according to the given mode
(‘constant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’
order - The order of the spline interpolation, default is 3. The order has to be in the range 0-5.
"""
if len(self.Image.shape) == 2:
return scipy.ndimage.shift(
self.Image, [height, width], order=order, mode=mode)
if len(self.Image.shape == 3):
return scipy.ndimage.shift(
self.Image, [height, width, 0], order=order, mode=mode)
示例13: apply_transform
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def apply_transform(x,
transform_matrix,
channel_axis=0,
fill_mode='nearest',
cval=0.):
"""Apply the image transformation specified by a matrix.
Arguments:
x: 2D numpy array, single image.
transform_matrix: Numpy array specifying the geometric transformation.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
Returns:
The transformed version of the input.
"""
x = np.rollaxis(x, channel_axis, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [
ndi.interpolation.affine_transform(
x_channel,
final_affine_matrix,
final_offset,
order=0,
mode=fill_mode,
cval=cval) for x_channel in x
]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
示例14: transform_array
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def transform_array(self, X, y, w):
"""Transform the data in a set of (X, y, w) arrays."""
images = [scipy.ndimage.imread(x, mode='RGB') for x in X]
images = [scipy.misc.imresize(x, size=self.size) for x in images]
return np.array(images), y, w
示例15: rotation
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndimage [as 别名]
def rotation(x, rg=20, is_random=False, row_index=0, col_index=1, channel_index=2,
fill_mode='nearest', cval=0.):
"""Rotate an image randomly or non-randomly.
Parameters
-----------
x : numpy array
An image with dimension of [row, col, channel] (default).
rg : int or float
Degree to rotate, usually 0 ~ 180.
is_random : boolean, default False
If True, randomly rotate.
row_index, col_index, channel_index : int
Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0).
fill_mode : string
Method to fill missing pixel, default ‘nearest’, more options ‘constant’, ‘reflect’ or ‘wrap’
- `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`_
cval : scalar, optional
Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0
- `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`_
Examples
---------
>>> x --> [row, col, 1] greyscale
>>> x = rotation(x, rg=40, is_random=False)
>>> tl.visualize.frame(x[:,:,0], second=0.01, saveable=True, name='temp',cmap='gray')
"""
if is_random:
theta = np.pi / 180 * np.random.uniform(-rg, rg)
else:
theta = np.pi /180 * rg
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
h, w = x.shape[row_index], x.shape[col_index]
transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval)
return x