本文整理汇总了Python中scipy.ndimage.correlate方法的典型用法代码示例。如果您正苦于以下问题:Python ndimage.correlate方法的具体用法?Python ndimage.correlate怎么用?Python ndimage.correlate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.ndimage
的用法示例。
在下文中一共展示了ndimage.correlate方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_correlate03
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate03(self):
array = numpy.array([1])
weights = numpy.array([1, 1])
expected = [2]
output = ndimage.correlate(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.correlate1d(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve1d(array, weights)
assert_array_almost_equal(output, expected)
示例2: test_correlate01
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate01(self):
array = numpy.array([1, 2])
weights = numpy.array([2])
expected = [2, 4]
output = ndimage.correlate(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.correlate1d(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve1d(array, weights)
assert_array_almost_equal(output, expected)
示例3: test_correlate13
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate13(self):
kernel = numpy.array([[1, 0],
[0, 1]])
for type1 in self.types:
array = numpy.array([[1, 2, 3],
[4, 5, 6]], type1)
for type2 in self.types:
output = ndimage.correlate(array, kernel,
output=type2)
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
assert_equal(output.dtype.type, type2)
output = ndimage.convolve(array, kernel,
output=type2)
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
assert_equal(output.dtype.type, type2)
示例4: test_correlate14
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate14(self):
kernel = numpy.array([[1, 0],
[0, 1]])
for type1 in self.types:
array = numpy.array([[1, 2, 3],
[4, 5, 6]], type1)
for type2 in self.types:
output = numpy.zeros(array.shape, type2)
ndimage.correlate(array, kernel,
output=output)
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
assert_equal(output.dtype.type, type2)
ndimage.convolve(array, kernel, output=output)
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
assert_equal(output.dtype.type, type2)
示例5: test_correlate19
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate19(self):
kernel = numpy.array([[1, 0],
[0, 1]])
for type1 in self.types:
array = numpy.array([[1, 2, 3],
[4, 5, 6]], type1)
output = ndimage.correlate(array, kernel,
output=numpy.float32,
mode='nearest', origin=[-1, 0])
assert_array_almost_equal([[5, 6, 8], [8, 9, 11]], output)
assert_equal(output.dtype.type, numpy.float32)
output = ndimage.convolve(array, kernel,
output=numpy.float32,
mode='nearest', origin=[-1, 0])
assert_array_almost_equal([[3, 5, 6], [6, 8, 9]], output)
assert_equal(output.dtype.type, numpy.float32)
示例6: test_generic_filter01
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_generic_filter01(self):
filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
footprint = numpy.array([[1, 0], [0, 1]])
cf = numpy.array([1., 4.])
def _filter_func(buffer, weights, total=1.0):
weights = cf / total
return (buffer * weights).sum()
for type in self.types:
a = numpy.arange(12, dtype=type)
a.shape = (3,4)
r1 = ndimage.correlate(a, filter_ * footprint)
if type in self.float_types:
r1 /= 5
else:
r1 //= 5
r2 = ndimage.generic_filter(a, _filter_func,
footprint=footprint, extra_arguments=(cf,),
extra_keywords={'total': cf.sum()})
assert_array_almost_equal(r1, r2)
示例7: test_generic_filter01
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_generic_filter01(self):
filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
footprint = numpy.array([[1, 0], [0, 1]])
cf = numpy.array([1., 4.])
def _filter_func(buffer, weights, total=1.0):
weights = cf / total
return (buffer * weights).sum()
for type_ in self.types:
a = numpy.arange(12, dtype=type_)
a.shape = (3, 4)
r1 = ndimage.correlate(a, filter_ * footprint)
if type_ in self.float_types:
r1 /= 5
else:
r1 //= 5
r2 = ndimage.generic_filter(
a, _filter_func, footprint=footprint, extra_arguments=(cf,),
extra_keywords={'total': cf.sum()})
assert_array_almost_equal(r1, r2)
示例8: gabor_feature_single_job
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def gabor_feature_single_job(a, filters, fm_i, label, cluster_center_number, save_flag):
# convolution
start_time = time.time()
# b=SN.correlate(a,filters[i]) # too slow
b = signal.correlate(a, filters[fm_i], mode='same')
end_time = time.time()
print('feature %d done (%f s)' % (fm_i, end_time - start_time))
# show Gabor filter output
if save_flag:
img = (b[:, :, int(a.shape[2] / 2)]).copy()
plt.imsave('./result/gabor_output(%d).png' % fm_i, img, cmap='gray') # save fig
# generate feature vector
start_time = time.time()
result = generate_feature_vector(b=b, label=label, cluster_center_number=cluster_center_number)
end_time = time.time()
print('feature vector %d done (%f s)' % (fm_i, end_time - start_time))
return fm_i, result
示例9: _scc_single
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def _scc_single(GT,P,win,ws):
def _scc_filter(inp, axis, output, mode, cval):
return correlate(inp, win , output, mode, cval, 0)
GT_hp = generic_laplace(GT.astype(np.float64), _scc_filter)
P_hp = generic_laplace(P.astype(np.float64), _scc_filter)
win = fspecial(Filter.UNIFORM,ws)
sigmaGT_sq,sigmaP_sq,sigmaGT_P = _get_sigmas(GT_hp,P_hp,win)
sigmaGT_sq[sigmaGT_sq<0] = 0
sigmaP_sq[sigmaP_sq<0] = 0
den = np.sqrt(sigmaGT_sq) * np.sqrt(sigmaP_sq)
idx = (den==0)
den = _replace_value(den,0,1)
scc = sigmaGT_P / den
scc[idx] = 0
return scc
示例10: test_reference_correlation
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_reference_correlation():
ndim = 4
shape = np.random.randint(2, 20, size=ndim)
x = np.random.random(shape)
kern = reduce(np.outer, [[-1, 0, 0, 1]] * ndim).reshape((4,) * ndim)
px = np.pad(x, (2, 1), mode='reflect')
pxi = integral_image(px)
mean_fast = th.correlate_sparse(pxi, kern / 3 ** ndim, mode='valid')
mean_ref = ndi.correlate(x, np.ones((3,) * ndim) / 3 ** ndim,
mode='mirror')
np.testing.assert_allclose(mean_fast, mean_ref)
示例11: test_correlate02
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate02(self):
array = numpy.array([1, 2, 3])
kernel = numpy.array([1])
output = ndimage.correlate(array, kernel)
assert_array_almost_equal(array, output)
output = ndimage.convolve(array, kernel)
assert_array_almost_equal(array, output)
output = ndimage.correlate1d(array, kernel)
assert_array_almost_equal(array, output)
output = ndimage.convolve1d(array, kernel)
assert_array_almost_equal(array, output)
示例12: test_correlate04
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate04(self):
array = numpy.array([1, 2])
tcor = [2, 3]
tcov = [3, 4]
weights = numpy.array([1, 1])
output = ndimage.correlate(array, weights)
assert_array_almost_equal(output, tcor)
output = ndimage.convolve(array, weights)
assert_array_almost_equal(output, tcov)
output = ndimage.correlate1d(array, weights)
assert_array_almost_equal(output, tcor)
output = ndimage.convolve1d(array, weights)
assert_array_almost_equal(output, tcov)
示例13: test_correlate05
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate05(self):
array = numpy.array([1, 2, 3])
tcor = [2, 3, 5]
tcov = [3, 5, 6]
kernel = numpy.array([1, 1])
output = ndimage.correlate(array, kernel)
assert_array_almost_equal(tcor, output)
output = ndimage.convolve(array, kernel)
assert_array_almost_equal(tcov, output)
output = ndimage.correlate1d(array, kernel)
assert_array_almost_equal(tcor, output)
output = ndimage.convolve1d(array, kernel)
assert_array_almost_equal(tcov, output)
示例14: test_correlate07
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate07(self):
array = numpy.array([1, 2, 3])
expected = [5, 8, 11]
weights = numpy.array([1, 2, 1])
output = ndimage.correlate(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.correlate1d(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve1d(array, weights)
assert_array_almost_equal(output, expected)
示例15: test_correlate08
# 需要导入模块: from scipy import ndimage [as 别名]
# 或者: from scipy.ndimage import correlate [as 别名]
def test_correlate08(self):
array = numpy.array([1, 2, 3])
tcor = [1, 2, 5]
tcov = [3, 6, 7]
weights = numpy.array([1, 2, -1])
output = ndimage.correlate(array, weights)
assert_array_almost_equal(output, tcor)
output = ndimage.convolve(array, weights)
assert_array_almost_equal(output, tcov)
output = ndimage.correlate1d(array, weights)
assert_array_almost_equal(output, tcor)
output = ndimage.convolve1d(array, weights)
assert_array_almost_equal(output, tcov)