本文整理汇总了Python中scipy.ndarray方法的典型用法代码示例。如果您正苦于以下问题:Python scipy.ndarray方法的具体用法?Python scipy.ndarray怎么用?Python scipy.ndarray使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy
的用法示例。
在下文中一共展示了scipy.ndarray方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: matrix
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndarray [as 别名]
def matrix(self, time_interval, **kwargs):
"""Model matrix :math:`F`
Returns
-------
: :class:`numpy.ndarray` of shape\
(:py:attr:`~ndim_state`, :py:attr:`~ndim_state`)
"""
time_interval_sec = time_interval.total_seconds()
turn_ratedt = self.turn_rate * time_interval_sec
z = np.zeros([2, 2])
transition_matrices = [
model.matrix(time_interval) for model in self.model_list]
sandwich = block_diag(z, *transition_matrices, z)
sandwich[0:2, 0:2] = np.array([[1, np.sin(turn_ratedt)/self.turn_rate],
[0, np.cos(turn_ratedt)]])
sandwich[0:2, -2:] = np.array(
[[0, (np.cos(turn_ratedt)-1)/self.turn_rate],
[0, -np.sin(turn_ratedt)]])
sandwich[-2:, 0:2] = np.array(
[[0, (1-np.cos(turn_ratedt))/self.turn_rate],
[0, np.sin(turn_ratedt)]])
sandwich[-2:, -2:] = np.array([[1, np.sin(turn_ratedt)/self.turn_rate],
[0, np.cos(turn_ratedt)]])
return sandwich
示例2: __kullback_leibler
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndarray [as 别名]
def __kullback_leibler(h1, h2): # 36.3 us
"""
The actual KL implementation. @see kullback_leibler() for details.
Expects the histograms to be of type scipy.ndarray.
"""
result = h1.astype(scipy.float_)
mask = h1 != 0
result[mask] = scipy.multiply(h1[mask], scipy.log(h1[mask] / h2[mask]))
return scipy.sum(result)
示例3: __prepare_histogram
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndarray [as 别名]
def __prepare_histogram(h1, h2):
"""Convert the histograms to scipy.ndarrays if required."""
h1 = h1 if scipy.ndarray == type(h1) else scipy.asarray(h1)
h2 = h2 if scipy.ndarray == type(h2) else scipy.asarray(h2)
if h1.shape != h2.shape or h1.size != h2.size:
raise ValueError('h1 and h2 must be of same shape and size')
return h1, h2
示例4: execute
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndarray [as 别名]
def execute(self, image_array: ndarray):
pass
示例5: gen_feature_nodearray
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndarray [as 别名]
def gen_feature_nodearray(xi, feature_max=None):
if feature_max:
assert(isinstance(feature_max, int))
xi_shift = 0 # ensure correct indices of xi
if scipy and isinstance(xi, tuple) and len(xi) == 2\
and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector
index_range = xi[0] + 1 # index starts from 1
if feature_max:
index_range = index_range[scipy.where(index_range <= feature_max)]
elif scipy and isinstance(xi, scipy.ndarray):
xi_shift = 1
index_range = xi.nonzero()[0] + 1 # index starts from 1
if feature_max:
index_range = index_range[scipy.where(index_range <= feature_max)]
elif isinstance(xi, (dict, list, tuple)):
if isinstance(xi, dict):
index_range = xi.keys()
elif isinstance(xi, (list, tuple)):
xi_shift = 1
index_range = range(1, len(xi) + 1)
index_range = filter(lambda j: xi[j-xi_shift] != 0, index_range)
if feature_max:
index_range = filter(lambda j: j <= feature_max, index_range)
index_range = sorted(index_range)
else:
raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)')
ret = (feature_node*(len(index_range)+2))()
ret[-1].index = -1 # for bias term
ret[-2].index = -1
if scipy and isinstance(xi, tuple) and len(xi) == 2\
and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector
for idx, j in enumerate(index_range):
ret[idx].index = j
ret[idx].value = (xi[1])[idx]
else:
for idx, j in enumerate(index_range):
ret[idx].index = j
ret[idx].value = xi[j - xi_shift]
max_idx = 0
if len(index_range) > 0:
max_idx = index_range[-1]
return ret, max_idx
示例6: __init__
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import ndarray [as 别名]
def __init__(self, y, x, bias = -1):
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, scipy.ndarray))):
raise TypeError("type of y: {0} is not supported!".format(type(y)))
if isinstance(x, (list, tuple)):
if len(y) != len(x):
raise ValueError("len(y) != len(x)")
elif scipy != None and isinstance(x, (scipy.ndarray, sparse.spmatrix)):
if len(y) != x.shape[0]:
raise ValueError("len(y) != len(x)")
if isinstance(x, scipy.ndarray):
x = scipy.ascontiguousarray(x) # enforce row-major
if isinstance(x, sparse.spmatrix):
x = x.tocsr()
pass
else:
raise TypeError("type of x: {0} is not supported!".format(type(x)))
self.l = l = len(y)
self.bias = -1
max_idx = 0
x_space = self.x_space = []
if scipy != None and isinstance(x, sparse.csr_matrix):
csr_to_problem(x, self)
max_idx = x.shape[1]
else:
for i, xi in enumerate(x):
tmp_xi, tmp_idx = gen_feature_nodearray(xi)
x_space += [tmp_xi]
max_idx = max(max_idx, tmp_idx)
self.n = max_idx
self.y = (c_double * l)()
if scipy != None and isinstance(y, scipy.ndarray):
scipy.ctypeslib.as_array(self.y, (self.l,))[:] = y
else:
for i, yi in enumerate(y): self.y[i] = yi
self.x = (POINTER(feature_node) * l)()
if scipy != None and isinstance(x, sparse.csr_matrix):
base = addressof(self.x_space.ctypes.data_as(POINTER(feature_node))[0])
x_ptr = cast(self.x, POINTER(c_uint64))
x_ptr = scipy.ctypeslib.as_array(x_ptr,(self.l,))
x_ptr[:] = self.rowptr[:-1]*sizeof(feature_node)+base
else:
for i, xi in enumerate(self.x_space): self.x[i] = xi
self.set_bias(bias)