本文整理汇总了Python中scipy.misc.imread方法的典型用法代码示例。如果您正苦于以下问题:Python misc.imread方法的具体用法?Python misc.imread怎么用?Python misc.imread使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.misc
的用法示例。
在下文中一共展示了misc.imread方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_tf_example
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def create_tf_example(line, attribute_name, img_dir):
info = line.split()
img_name = os.path.join(img_dir, info[0])
img = misc.imread(img_name)
# from IPython import embed; embed();exit()
feature={
'image/id_name': bytes_feature(info[0]),
'image/height' : int64_feature(img.shape[0]),
'image/width' : int64_feature(img.shape[1]),
'image/encoded': bytes_feature(tf.compat.as_bytes(img.tostring())),
}
for j, val in enumerate(info[1:]):
feature[attribute_name[j]] = int64_feature(int(val))
example = tf.train.Example(features=tf.train.Features(feature=feature))
return example
示例2: __getitem__
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def __getitem__(self, index):
"""__getitem__
:param index:
"""
img_path = self.files[self.split][index].rstrip()
lbl_path = os.path.join(self.annotations_base, os.path.basename(img_path)[:-4] + '.png')
img = m.imread(img_path)
img = np.array(img, dtype=np.uint8)
lbl = m.imread(lbl_path)
lbl = np.array(lbl, dtype=np.uint8)
if self.augmentations is not None:
img, lbl = self.augmentations(img, lbl)
if self.is_transform:
img, lbl = self.transform(img, lbl)
return img, lbl
示例3: __getitem__
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def __getitem__(self, index):
img_path = self.files[self.split][index].rstrip()
img_number = img_path.split("_")[-1][:4]
lbl_path = os.path.join(
self.root, self.split + "_annot", "new_nyu_class13_" + img_number + ".png"
)
img = m.imread(img_path)
img = np.array(img, dtype=np.uint8)
lbl = m.imread(lbl_path)
lbl = np.array(lbl, dtype=np.uint8)
if not (len(img.shape) == 3 and len(lbl.shape) == 2):
return self.__getitem__(np.random.randint(0, self.__len__()))
if self.augmentations is not None:
img, lbl = self.augmentations(img, lbl)
if self.is_transform:
img, lbl = self.transform(img, lbl)
return img, lbl
示例4: __getitem__
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def __getitem__(self, index):
img_path = self.files[self.split][index].rstrip()
lbl_path = self.anno_files[self.split][index].rstrip()
# img_number = img_path.split('/')[-1]
# lbl_path = os.path.join(self.root, 'annotations', img_number).replace('jpg', 'png')
img = m.imread(img_path)
img = np.array(img, dtype=np.uint8)
lbl = m.imread(lbl_path)
lbl = np.array(lbl, dtype=np.uint8)
if not (len(img.shape) == 3 and len(lbl.shape) == 2):
return self.__getitem__(np.random.randint(0, self.__len__()))
if self.augmentations is not None:
img, lbl = self.augmentations(img, lbl)
if self.is_transform:
img, lbl = self.transform(img, lbl)
return img, lbl
示例5: __getitem__
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def __getitem__(self, index):
"""__getitem__
:param index:
"""
img_path = self.files[self.split][index].rstrip()
lbl_path = os.path.join(self.annotations_base,
img_path.split(os.sep)[-2],
os.path.basename(img_path)[:-15] + 'gtFine_labelIds.png')
img = m.imread(img_path)
img = np.array(img, dtype=np.uint8)
lbl = m.imread(lbl_path)
lbl = self.encode_segmap(np.array(lbl, dtype=np.uint8))
if self.augmentations is not None:
img, lbl = self.augmentations(img, lbl)
if self.is_transform:
img, lbl = self.transform(img, lbl)
return img, lbl
示例6: __getitem__
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def __getitem__(self, index):
img_path = self.files[self.split][index].rstrip()
lbl_path = img_path[:-4] + '_seg.png'
img = m.imread(img_path)
img = np.array(img, dtype=np.uint8)
lbl = m.imread(lbl_path)
lbl = np.array(lbl, dtype=np.int32)
if self.augmentations is not None:
img, lbl = self.augmentations(img, lbl)
if self.is_transform:
img, lbl = self.transform(img, lbl)
return img, lbl
示例7: create_pkl
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def create_pkl():
with open(settings.TEST_CLASSIFICATION) as f:
lines = f.read().splitlines()
with open(settings.TEST_CLASSIFICATION_GT) as f:
gt_lines = f.read().splitlines()
assert len(lines) == len(gt_lines)
test = []
for i, line in enumerate(lines):
anno = json.loads(line.strip())
gt_anno = json.loads(gt_lines[i].strip())
image = misc.imread(os.path.join(settings.TEST_IMAGE_DIR, anno['file_name']))
assert image.shape == (anno['height'], anno['width'], 3)
assert len(anno['proposals']) == len(gt_anno['ground_truth'])
for proposal, gt in zip(anno['proposals'], gt_anno['ground_truth']):
cropped = crop(image, proposal['adjusted_bbox'], 32)
test.append([cropped, gt])
if i % 100 == 0:
print('test', i, '/', len(lines))
with open(settings.TEST_CLS_CROPPED, 'wb') as f:
cPickle.dump(test, f)
示例8: getInVidsAtFrame
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def getInVidsAtFrame(f):
arr = np.zeros([1, INVID_HEIGHT,INVID_WIDTH,INVID_DEPTH])
for imageIndex in range(0,29):
strIndex = str(f-14+imageIndex)
while len(strIndex) < 4:
strIndex = "0"+strIndex
newImage = misc.imread('3/mouthImages/frame'+strIndex+'.jpg')
if newImage.shape[0] > INVID_HEIGHT:
extraMargin = (newImage.shape[0]-INVID_HEIGHT)//2
newImage = newImage[extraMargin:extraMargin+INVID_HEIGHT,:,:]
if newImage.shape[1] > INVID_WIDTH:
extraMargin = (newImage.shape[1]-INVID_WIDTH)//2
newImage = newImage[:,extraMargin:extraMargin+INVID_WIDTH,:]
h = newImage.shape[0]
w = newImage.shape[1]
yStart = (INVID_HEIGHT-h)//2
xStart = (INVID_WIDTH-w)//2
arr[:,yStart:yStart+h,xStart:xStart+w,imageIndex*3:(imageIndex+1)*3] = newImage
return np.asarray(arr)/255.0
示例9: hist_feature_extract
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def hist_feature_extract(feature_size, num_patch, max_length, patch_folder):
fea_mat = np.zeros((num_patch,feature_size-4+2))
tracklet_list = os.listdir(patch_folder)
N_tracklet = len(tracklet_list)
cnt = 0
for n in range(N_tracklet):
tracklet_folder = patch_folder+'/'+tracklet_list[n]
patch_list = os.listdir(tracklet_folder)
# get patch list, track_id and fr_id, starts from 1
prev_cnt = cnt
for m in range(len(patch_list)):
# track_id
fea_mat[cnt,0] = n+1
# fr_id
fea_mat[cnt,1] = int(patch_list[m][-8:-4])
patch_list[m] = tracklet_folder+'/'+patch_list[m]
patch_img = imread(patch_list[m])
fea_mat[cnt,2:] = track_lib.extract_hist(patch_img)
#import pdb; pdb.set_trace()
cnt = cnt+1
return fea_mat
示例10: _compute_statistics_of_path_1
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def _compute_statistics_of_path_1(path, model, batch_size, dims, cuda):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
imgs = np.array([imread(str(fn)).astype(np.float32) for fn in files])
# Bring images to shape (B, 3, H, W)
imgs = imgs.transpose((0, 3, 1, 2))
# Rescale images to be between 0 and 1
imgs = (imgs/255)*2-1
m, s = calculate_activation_statistics(imgs, model, batch_size,
dims, cuda)
return m, s
示例11: _compute_statistics_of_path
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def _compute_statistics_of_path(path, model, batch_size, dims, cuda):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
#imgs = np.array([imresize(imread(str(fn)),(64,64)).astype(np.float32) for fn in files])
imgs = np.array([imread(str(fn)).astype(np.float32) for fn in files])
# Bring images to shape (B, 3, H, W)
imgs = imgs.transpose((0, 3, 1, 2))
# Rescale images to be between 0 and 1
imgs /= 255
m, s = calculate_activation_statistics(imgs, model, batch_size,
dims, cuda)
return m, s
示例12: resizeImg
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def resizeImg(imgPath,img_size):
img = imread(imgPath)
h, w, _ = img.shape
scale = 1
if w >= h:
new_w = img_size
if w >= new_w:
scale = float(new_w) / w
new_h = int(h * scale)
else:
new_h = img_size
if h >= new_h:
scale = float(new_h) / h
new_w = int(w * scale)
new_img = imresize(img, (new_h, new_w), interp='bilinear')
imsave(imgPath,new_img)
#Download img
#Later we can do multi thread apply workers to do faster work
示例13: resizeImg
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def resizeImg(imgPath,img_size):
img = imread(imgPath)
h, w, _ = img.shape
scale = 1
if w >= h:
new_w = img_size
if w >= new_w:
scale = float(new_w) / w
new_h = int(h * scale)
else:
new_h = img_size
if h >= new_h:
scale = float(new_h) / h
new_w = int(w * scale)
new_img = imresize(img, (new_h, new_w), interp='bilinear')
imsave(imgPath,new_img)
print('Img Resized as {}'.format(img_size))
示例14: resizeImg
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def resizeImg(imgPath,img_size):
try:
img = imread(imgPath)
h, w, _ = img.shape
scale = 1
if w >= h:
new_w = img_size
if w >= new_w:
scale = float(new_w) / w
new_h = int(h * scale)
else:
new_h = img_size
if h >= new_h:
scale = float(new_h) / h
new_w = int(w * scale)
new_img = imresize(img, (new_h, new_w), interp='bilinear')
imsave(imgPath,new_img)
print('Img Resized as {}'.format(img_size))
except Exception as e:
print(e)
示例15: read_image
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import imread [as 别名]
def read_image(path):
image = imread(path)
if len(image.shape) != 3 or image.shape[2] != 3:
print('Wrong image {} with shape {}'.format(path, image.shape))
return None
# split image
h, w, c = image.shape
assert w in [256, 512, 1200], 'Image size mismatch ({}, {})'.format(h, w)
assert h in [128, 256, 600], 'Image size mismatch ({}, {})'.format(h, w)
if 'maps' in path:
image_a = image[:, w/2:, :].astype(np.float32) / 255.0
image_b = image[:, :w/2, :].astype(np.float32) / 255.0
else:
image_a = image[:, :w/2, :].astype(np.float32) / 255.0
image_b = image[:, w/2:, :].astype(np.float32) / 255.0
# range of pixel values = [-1.0, 1.0]
image_a = image_a * 2.0 - 1.0
image_b = image_b * 2.0 - 1.0
return image_a, image_b