本文整理汇总了Python中scipy.misc.factorial方法的典型用法代码示例。如果您正苦于以下问题:Python misc.factorial方法的具体用法?Python misc.factorial怎么用?Python misc.factorial使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.misc
的用法示例。
在下文中一共展示了misc.factorial方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _K_T_xs
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _K_T_xs(self, temperature, volume, params): # K_T_xs, eq. 3.20 of de Koker thesis
f = self._finite_strain(temperature, volume, params)
theta = self._theta(temperature, volume, params)
K_ToverV=0.
for i in range(len(params['a'])):
ifact=factorial(i, exact=False)
for j in range(len(params['a'][0])):
if i > 0:
jfact=factorial(j, exact=False)
prefactor = float(i) * params['a'][i][j] \
* np.power(theta, float(j)) / ifact / jfact
K_ToverV += prefactor*self._d2fdV2(temperature, volume, params) \
* np.power(f, float(i-1))
if i > 1:
dfdV = self._dfdV(temperature, volume, params)
K_ToverV += prefactor * dfdV * dfdV \
* float(i-1) * np.power(f, float(i-2))
return volume*K_ToverV
示例2: _alphaK_T_xs
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _alphaK_T_xs(self, temperature, volume, params): # eq. 3.21 of de Koker thesis
f = self._finite_strain(temperature, volume, params)
theta = self._theta(temperature, volume, params)
sum_factors = 0.
for i in range(len(params['a'])):
ifact=factorial(i, exact=False)
if i > 0:
for j in range(len(params['a'][0])):
if j > 0:
jfact=factorial(j, exact=False)
sum_factors += float(i)*float(j)*params['a'][i][j] \
* np.power(f, float(i-1)) * np.power(theta, float(j-1)) \
/ ifact / jfact
return -self._dfdV(temperature, volume, params) \
* self._dthetadT(temperature, volume, params) \
* sum_factors
示例3: normal_reference_constant
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def normal_reference_constant(self):
"""
Constant used for silverman normal reference asymtotic bandwidth
calculation.
C = 2((pi^(1/2)*(nu!)^3 R(k))/(2nu(2nu)!kap_nu(k)^2))^(1/(2nu+1))
nu = kernel order
kap_nu = nu'th moment of kernel
R = kernel roughness (square of L^2 norm)
Note: L2Norm property returns square of norm.
"""
nu = self._order
if not nu == 2:
msg = "Only implemented for second order kernels"
raise NotImplementedError(msg)
if self._normal_reference_constant is None:
C = np.pi**(.5) * factorial(nu)**3 * self.L2Norm
C /= (2 * nu * factorial(2 * nu) * self.moments(nu)**2)
C = 2*C**(1.0/(2*nu+1))
self._normal_reference_constant = C
return self._normal_reference_constant
示例4: _compute_coefs_pdf
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _compute_coefs_pdf(self, cum):
# scale cumulants by \sigma
mu, sigma = cum[0], np.sqrt(cum[1])
lam = np.asarray(cum)
for j, l in enumerate(lam):
lam[j] /= cum[1]**j
coef = np.zeros(lam.size * 3 - 5)
coef[0] = 1.
for s in range(lam.size - 2):
for p in _faa_di_bruno_partitions(s+1):
term = sigma**(s+1)
for (m, k) in p:
term *= np.power(lam[m+1] / factorial(m+2), k) / factorial(k)
r = sum(k for (m, k) in p)
coef[s + 1 + 2*r] += term
return coef, mu, sigma
示例5: nloglikeobs
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def nloglikeobs(self, params):
"""
Loglikelihood of Poisson model
Parameters
----------
params : array-like
The parameters of the model.
Returns
-------
The log likelihood of the model evaluated at `params`
Notes
--------
.. math:: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right]
"""
XB = np.dot(self.exog, params)
endog = self.endog
return np.exp(XB) - endog*XB + np.log(factorial(endog))
示例6: __init__
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def __init__(self, xi, yi, axis=0):
_Interpolator1DWithDerivatives.__init__(self, xi, yi, axis)
self.xi = np.asarray(xi)
self.yi = self._reshape_yi(yi)
self.n, self.r = self.yi.shape
c = np.zeros((self.n+1, self.r), dtype=self.dtype)
c[0] = self.yi[0]
Vk = np.zeros((self.n, self.r), dtype=self.dtype)
for k in xrange(1,self.n):
s = 0
while s <= k and xi[k-s] == xi[k]:
s += 1
s -= 1
Vk[0] = self.yi[k]/float(factorial(s))
for i in xrange(k-s):
if xi[i] == xi[k]:
raise ValueError("Elements if `xi` can't be equal.")
if s == 0:
Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
else:
Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
c[k] = Vk[k-s]
self.c = c
示例7: get_K
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def get_K(x, n):
"""
It computes the polinomials K needed for Kirkwood-1934 solutions.
K_n(x) in Equation 4 in Kirkwood 1934.
Arguments
----------
x: float, evaluation point of K.
n: int, number of terms desired in the expansion.
Returns
--------
K: float, polinomials K.
"""
K = 0.
n_fact = factorial(n)
n_fact2 = factorial(2 * n)
for s in range(n + 1):
K += 2**s * n_fact * factorial(2 * n - s) / (factorial(s) * n_fact2 *
factorial(n - s)) * x**s
return K
示例8: nloglikeobs
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def nloglikeobs(self, params):
"""
Loglikelihood of Poisson model
Parameters
----------
params : array-like
The parameters of the model.
Returns
-------
The log likelihood of the model evaluated at `params`
Notes
--------
.. math :: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right]
"""
XB = np.dot(self.exog, params)
endog = self.endog
return np.exp(XB) - endog*XB + np.log(factorial(endog))
示例9: _F_xs
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _F_xs(self, temperature, volume, params): # F_xs, eq. S2
f = self._finite_strain(temperature, volume, params)
theta = self._theta(temperature, volume, params)
energy = 0.
for i in range(len(params['a'])):
ifact=factorial(i, exact=False)
for j in range(len(params['a'][0])):
jfact=factorial(j, exact=False)
energy += params['a'][i][j]*np.power(f, i)*np.power(theta, j)/ifact/jfact
return energy
示例10: _S_xs
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _S_xs(self, temperature, volume, params): # F_xs, eq. 3.18
f = self._finite_strain(temperature, volume, params)
theta = self._theta(temperature, volume, params)
entropy = 0.
for i in range(len(params['a'])):
ifact = factorial(i, exact=False)
for j in range(len(params['a'][0])):
if j > 0:
jfact = factorial(j, exact=False)
entropy += j*params['a'][i][j]*np.power(f, i)*np.power(theta, j-1.)/ifact/jfact
return -self._dthetadT(temperature, volume, params)*entropy
示例11: _P_xs
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _P_xs(self, temperature, volume, params): # P_xs, eq. 3.17 of de Koker thesis
f = self._finite_strain(temperature, volume, params)
theta = self._theta(temperature, volume, params)
pressure=0.
for i in range(len(params['a'])):
ifact=factorial(i, exact=False)
if i > 0:
for j in range(len(params['a'][0])):
jfact=factorial(j, exact=False)
pressure += float(i)*params['a'][i][j]*np.power(f, float(i)-1.)*np.power(theta, float(j))/ifact/jfact
return -self._dfdV(temperature, volume, params)*pressure
示例12: _chi2_cumulant
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _chi2_cumulant(n, df):
assert n > 0
return 2**(n-1) * factorial(n - 1) * df
示例13: cumulant_from_moments
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def cumulant_from_moments(momt, n):
"""Compute n-th cumulant given moments.
Parameters
----------
momt: array_like
`momt[j]` contains `(j+1)`-th moment.
These can be raw moments around zero, or central moments
(in which case, `momt[0]` == 0).
n: integer
which cumulant to calculate (must be >1)
Returns
-------
kappa: float
n-th cumulant.
"""
if n < 1:
raise ValueError("Expected a positive integer. Got %s instead." % n)
if len(momt) < n:
raise ValueError("%s-th cumulant requires %s moments, "
"only got %s." % (n, n, len(momt)))
kappa = 0.
for p in _faa_di_bruno_partitions(n):
r = sum(k for (m, k) in p)
term = (-1)**(r - 1) * factorial(r - 1)
for (m, k) in p:
term *= np.power(momt[m - 1] / factorial(m), k) / factorial(k)
kappa += term
kappa *= factorial(n)
return kappa
## copied from scipy.stats.distributions to avoid the overhead of
## the public methods
示例14: _evaluate_derivatives
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def _evaluate_derivatives(self, x, der=None):
n = self.n
r = self.r
if der is None:
der = self.n
pi = np.zeros((n, len(x)))
w = np.zeros((n, len(x)))
pi[0] = 1
p = np.zeros((len(x), self.r))
p += self.c[0,np.newaxis,:]
for k in xrange(1,n):
w[k-1] = x - self.xi[k-1]
pi[k] = w[k-1]*pi[k-1]
p += pi[k,:,np.newaxis]*self.c[k]
cn = np.zeros((max(der,n+1), len(x), r), dtype=self.dtype)
cn[:n+1,:,:] += self.c[:n+1,np.newaxis,:]
cn[0] = p
for k in xrange(1,n):
for i in xrange(1,n-k+1):
pi[i] = w[k+i-1]*pi[i-1]+pi[i]
cn[k] = cn[k]+pi[i,:,np.newaxis]*cn[k+i]
cn[k] *= factorial(k)
cn[n,:,:] = 0
return cn[:der]
示例15: combine_pvalues
# 需要导入模块: from scipy import misc [as 别名]
# 或者: from scipy.misc import factorial [as 别名]
def combine_pvalues(x):
#k=x.prod()
k= np.exp(np.log(x).sum())
p=0
for i in range(len(x)):
p+=np.power(-np.log(k),i)/factorial(i)
#print k --i
#print p
return k*p