本文整理汇总了Python中scipy.linalg.orth方法的典型用法代码示例。如果您正苦于以下问题:Python linalg.orth方法的具体用法?Python linalg.orth怎么用?Python linalg.orth使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.linalg
的用法示例。
在下文中一共展示了linalg.orth方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: random_walk
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def random_walk(G,initial_prob,subspace_dim=3,walk_steps=3):
"""
Start a random walk with probability distribution p_initial.
Transition matrix needs to be calculated according to adjacent matrix G.
"""
assert type(initial_prob) == np.ndarray, "Initial probability distribution is \
not a numpy array"
# Transform the adjacent matrix to a laplacian matrix P
P = adj_to_Laplacian(G)
Prob_Matrix = np.zeros((G.shape[0], subspace_dim))
Prob_Matrix[:,0] = initial_prob
for i in range(1,subspace_dim):
Prob_Matrix[:,i] = np.dot(Prob_Matrix[:,i-1], P)
Orth_Prob_Matrix = splin.orth(Prob_Matrix)
for i in range(walk_steps):
temp = np.dot(Orth_Prob_Matrix.T, P)
Orth_Prob_Matrix = splin.orth(temp.T)
return Orth_Prob_Matrix
示例2: compare_solutions
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def compare_solutions(A,B,m):
n = A.shape[0]
numpy.random.seed(0)
V = rand(n,m)
X = linalg.orth(V)
eigs,vecs = lobpcg(A, X, B=B, tol=1e-5, maxiter=30)
eigs.sort()
#w,v = symeig(A,B)
w,v = eig(A,b=B)
w.sort()
assert_almost_equal(w[:int(m/2)],eigs[:int(m/2)],decimal=2)
#from pylab import plot, show, legend, xlabel, ylabel
#plot(arange(0,len(w[:m])),w[:m],'bx',label='Results by symeig')
#plot(arange(0,len(eigs)),eigs,'r+',label='Results by lobpcg')
#legend()
#xlabel(r'Eigenvalue $i$')
#ylabel(r'$\lambda_i$')
#show()
示例3: find_shared_subspace
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def find_shared_subspace(mat1, mat2, sin_thres=0.05, cos_thres=1 / math.sqrt(2), mat2_vec=False,
assume_orthonomal=False, get_angle=True):
if mat2_vec:
mat2 = mat2[:, None]
if not assume_orthonomal:
mat1 = orth(mat1)
mat2 = orth(mat2)
cross_prod = np.dot(mat1.T, mat2)
singular = np.linalg.svd(cross_prod)
shared = sum(singular[1] > sin_thres)
if not get_angle:
return None, shared
costheta = min(singular[1])
if costheta < cos_thres:
theta = math.acos(min(1, costheta))
else:
if mat1.shape[1] < mat2.shape[1]:
sintheta = np.linalg.norm(x=mat1 - np.dot(mat2, cross_prod.T), ord=2)
else:
sintheta = np.linalg.norm(x=mat2.T - np.dot(mat1, cross_prod), ord=2)
theta = math.asin(min(1, sintheta))
return 180 * theta / math.pi, shared
示例4: __random_walk
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def __random_walk(G, initial_prob, subspace_dim=3, walk_steps=3):
"""
Start a random walk with probability distribution p_initial.
Transition matrix needs to be calculated according to adjacent matrix G.
"""
assert type(initial_prob) == np.ndarray, "Initial probability distribution is \
not a numpy array"
# Transform the adjacent matrix to a laplacian matrix P
P = __adj_to_Laplacian(G)
Prob_Matrix = np.zeros((G.shape[0], subspace_dim))
Prob_Matrix[:, 0] = initial_prob
for i in range(1, subspace_dim):
Prob_Matrix[:, i] = np.dot(Prob_Matrix[:, i - 1], P)
Orth_Prob_Matrix = splin.orth(Prob_Matrix)
for i in range(walk_steps):
temp = np.dot(Orth_Prob_Matrix.T, P)
Orth_Prob_Matrix = splin.orth(temp.T)
return Orth_Prob_Matrix
示例5: test_fit_elbows
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def test_fit_elbows():
n=10; elbows=3
np.random.seed(1)
x = np.random.binomial(1, 0.6, (n ** 2)).reshape(n, n)
xorth = orth(x)
d = np.zeros(xorth.shape[0])
for i in range(0, len(d), int(len(d) / (elbows + 1))):
d[:i] += 10
X = xorth.T.dot(np.diag(d)).dot(xorth)
Xs = [X, X]
ajive = AJIVE(n_elbows=2)
ajive = ajive.fit(Xs)
np.testing.assert_equal(list(ajive.init_signal_ranks_.values())[0], 4)
示例6: compare_solutions
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def compare_solutions(A,B,m):
n = A.shape[0]
np.random.seed(0)
V = rand(n,m)
X = linalg.orth(V)
eigs,vecs = lobpcg(A, X, B=B, tol=1e-5, maxiter=30)
eigs.sort()
w,v = eig(A,b=B)
w.sort()
assert_almost_equal(w[:int(m/2)],eigs[:int(m/2)],decimal=2)
示例7: generate_data
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def generate_data(n=10, elbows=3, seed=1):
"""
Generate data matrix with a specific number of elbows on scree plot
"""
np.random.seed(seed)
x = np.random.binomial(1, 0.6, (n ** 2)).reshape(n, n)
xorth = orth(x)
d = np.zeros(xorth.shape[0])
for i in range(0, len(d), int(len(d) / (elbows + 1))):
d[:i] += 10
A = xorth.T.dot(np.diag(d)).dot(xorth)
return A, d
示例8: gen_union_of_subspaces
# 需要导入模块: from scipy import linalg [as 别名]
# 或者: from scipy.linalg import orth [as 别名]
def gen_union_of_subspaces(ambient_dim, subspace_dim, num_subspaces, num_points_per_subspace, noise_level=0.0):
"""This funtion generates a union of subspaces under random model, i.e.,
subspaces are independently and uniformly distributed in the ambient space,
data points are independently and uniformly distributed on the unit sphere of each subspace
Parameters
-----------
ambient_dim : int
Dimention of the ambient space
subspace_dim : int
Dimension of each subspace (all subspaces have the same dimension)
num_subspaces : int
Number of subspaces to be generated
num_points_per_subspace : int
Number of data points from each of the subspaces
noise_level : float
Amount of Gaussian noise on data
Returns
-------
data : shape (num_subspaces * num_points_per_subspace) by ambient_dim
Data matrix containing points drawn from a union of subspaces as its rows
label : shape (num_subspaces * num_points_per_subspace)
Membership of each data point to the subspace it lies in
"""
data = np.empty((num_points_per_subspace* num_subspaces, ambient_dim))
label = np.empty(num_points_per_subspace * num_subspaces, dtype=int)
for i in range(num_subspaces):
basis = np.random.normal(size=(ambient_dim, subspace_dim))
basis = orth(basis)
coeff = np.random.normal(size=(subspace_dim, num_points_per_subspace))
coeff = normalize(coeff, norm='l2', axis=0, copy=False)
data_per_subspace = np.matmul(basis, coeff).T
base_index = i*num_points_per_subspace
data[(0+base_index):(num_points_per_subspace+base_index), :] = data_per_subspace
label[0+base_index:num_points_per_subspace+base_index,] = i
data += np.random.normal(size=(num_points_per_subspace * num_subspaces, ambient_dim)) * noise_level
return data, label