本文整理汇总了Python中scipy.linalg.lapack.get_lapack_funcs方法的典型用法代码示例。如果您正苦于以下问题:Python lapack.get_lapack_funcs方法的具体用法?Python lapack.get_lapack_funcs怎么用?Python lapack.get_lapack_funcs使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.linalg.lapack
的用法示例。
在下文中一共展示了lapack.get_lapack_funcs方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_trsyl
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_trsyl(self):
a = np.array([[1, 2], [0, 4]])
b = np.array([[5, 6], [0, 8]])
c = np.array([[9, 10], [11, 12]])
trans = 'T'
# Test single and double implementations, including most
# of the options
for dtype in 'fdFD':
a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype)
trsyl, = get_lapack_funcs(('trsyl',), (a1,))
if dtype.isupper(): # is complex dtype
a1[0] += 1j
trans = 'C'
x, scale, info = trsyl(a1, b1, c1)
assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1), scale * c1)
x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans)
assert_array_almost_equal(np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T),
scale * c1, decimal=4)
x, scale, info = trsyl(a1, b1, c1, isgn=-1)
assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1), scale * c1, decimal=4)
示例2: test_ticket_1645
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_ticket_1645(self):
# Check that RQ routines have correct lwork
for dtype in DTYPES:
a = np.zeros((300, 2), dtype=dtype)
gerqf, = get_lapack_funcs(['gerqf'], [a])
assert_raises(Exception, gerqf, a, lwork=2)
rq, tau, work, info = gerqf(a)
if dtype in REAL_DTYPES:
orgrq, = get_lapack_funcs(['orgrq'], [a])
assert_raises(Exception, orgrq, rq[-2:], tau, lwork=1)
orgrq(rq[-2:], tau, lwork=2)
elif dtype in COMPLEX_DTYPES:
ungrq, = get_lapack_funcs(['ungrq'], [a])
assert_raises(Exception, ungrq, rq[-2:], tau, lwork=1)
ungrq(rq[-2:], tau, lwork=2)
示例3: test_gh_2691
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_gh_2691(self):
# 'lower' argument of dportf/dpotri
for lower in [True, False]:
for clean in [True, False]:
np.random.seed(42)
x = np.random.normal(size=(3, 3))
a = x.dot(x.T)
dpotrf, dpotri = get_lapack_funcs(("potrf", "potri"), (a, ))
c, info = dpotrf(a, lower, clean=clean)
dpt = dpotri(c, lower)[0]
if lower:
assert_allclose(np.tril(dpt), np.tril(inv(a)))
else:
assert_allclose(np.triu(dpt), np.triu(inv(a)))
示例4: test_lartg
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_lartg():
for dtype in 'fdFD':
lartg = get_lapack_funcs('lartg', dtype=dtype)
f = np.array(3, dtype)
g = np.array(4, dtype)
if np.iscomplexobj(g):
g *= 1j
cs, sn, r = lartg(f, g)
assert_allclose(cs, 3.0/5.0)
assert_allclose(r, 5.0)
if np.iscomplexobj(g):
assert_allclose(sn, -4.0j/5.0)
assert_(type(r) == complex)
assert_(type(cs) == float)
else:
assert_allclose(sn, 4.0/5.0)
示例5: test_sycon_hecon
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_sycon_hecon():
seed(1234)
for ind, dtype in enumerate(DTYPES+COMPLEX_DTYPES):
# DTYPES + COMPLEX DTYPES = <s,d,c,z> sycon + <c,z>hecon
n = 10
# For <s,d,c,z>sycon
if ind < 4:
func_lwork = get_lapack_funcs('sytrf_lwork', dtype=dtype)
funcon, functrf = get_lapack_funcs(('sycon', 'sytrf'), dtype=dtype)
A = (rand(n, n)).astype(dtype)
# For <c,z>hecon
else:
func_lwork = get_lapack_funcs('hetrf_lwork', dtype=dtype)
funcon, functrf = get_lapack_funcs(('hecon', 'hetrf'), dtype=dtype)
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
# Since sycon only refers to upper/lower part, conj() is safe here.
A = (A + A.conj().T)/2 + 2*np.eye(n, dtype=dtype)
anorm = np.linalg.norm(A, 1)
lwork = _compute_lwork(func_lwork, n)
ldu, ipiv, _ = functrf(A, lwork=lwork, lower=1)
rcond, _ = funcon(a=ldu, ipiv=ipiv, anorm=anorm, lower=1)
# The error is at most 1-fold
assert_(abs(1/rcond - np.linalg.cond(A, p=1))*rcond < 1)
示例6: qr_destroy
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def qr_destroy(la):
"""
Return QR decomposition of `la[0]`. Content of `la` gets destroyed in the process.
Using this function should be less memory intense than calling `scipy.linalg.qr(la[0])`,
because the memory used in `la[0]` is reclaimed earlier.
"""
a = numpy.asfortranarray(la[0])
del la[0], la # now `a` is the only reference to the input matrix
m, n = a.shape
# perform q, r = QR(a); code hacked out of scipy.linalg.qr
logger.debug("computing QR of %s dense matrix" % str(a.shape))
geqrf, = get_lapack_funcs(('geqrf',), (a,))
qr, tau, work, info = geqrf(a, lwork=-1, overwrite_a=True)
qr, tau, work, info = geqrf(a, lwork=work[0], overwrite_a=True)
del a # free up mem
assert info >= 0
r = triu(qr[:n, :n])
if m < n: # rare case, #features < #topics
qr = qr[:, :m] # retains fortran order
gorgqr, = get_lapack_funcs(('orgqr',), (qr,))
q, work, info = gorgqr(qr, tau, lwork=-1, overwrite_a=True)
q, work, info = gorgqr(qr, tau, lwork=work[0], overwrite_a=True)
assert info >= 0, "qr failed"
assert q.flags.f_contiguous
return q, r
示例7: test_trsyl
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_trsyl(self):
a = np.array([[1, 2], [0, 4]])
b = np.array([[5, 6], [0, 8]])
c = np.array([[9, 10], [11, 12]])
trans = 'T'
# Test single and double implementations, including most
# of the options
for dtype in 'fdFD':
a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype)
trsyl, = get_lapack_funcs(('trsyl',), (a1,))
if dtype.isupper(): # is complex dtype
a1[0] += 1j
trans = 'C'
x, scale, info = trsyl(a1, b1, c1)
assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1),
scale * c1)
x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans)
assert_array_almost_equal(
np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T),
scale * c1, decimal=4)
x, scale, info = trsyl(a1, b1, c1, isgn=-1)
assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1),
scale * c1, decimal=4)
示例8: test_lange
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_lange(self):
a = np.array([
[-149, -50, -154],
[537, 180, 546],
[-27, -9, -25]])
for dtype in 'fdFD':
for norm in 'Mm1OoIiFfEe':
a1 = a.astype(dtype)
if dtype.isupper():
# is complex dtype
a1[0, 0] += 1j
lange, = get_lapack_funcs(('lange',), (a1,))
value = lange(norm, a1)
if norm in 'FfEe':
if dtype in 'Ff':
decimal = 3
else:
decimal = 7
ref = np.sqrt(np.sum(np.square(np.abs(a1))))
assert_almost_equal(value, ref, decimal)
else:
if norm in 'Mm':
ref = np.max(np.abs(a1))
elif norm in '1Oo':
ref = np.max(np.sum(np.abs(a1), axis=0))
elif norm in 'Ii':
ref = np.max(np.sum(np.abs(a1), axis=1))
assert_equal(value, ref)
示例9: test_sing_val_update
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_sing_val_update(self):
sigmas = np.array([4., 3., 2., 0])
m_vec = np.array([3.12, 5.7, -4.8, -2.2])
M = np.hstack((np.vstack((np.diag(sigmas[0:-1]),
np.zeros((1, len(m_vec) - 1)))), m_vec[:, np.newaxis]))
SM = svd(M, full_matrices=False, compute_uv=False, overwrite_a=False,
check_finite=False)
it_len = len(sigmas)
sgm = np.concatenate((sigmas[::-1], (sigmas[0] +
it_len*np.sqrt(np.sum(np.power(m_vec, 2))),)))
mvc = np.concatenate((m_vec[::-1], (0,)))
lasd4 = get_lapack_funcs('lasd4', (sigmas,))
roots = []
for i in range(0, it_len):
res = lasd4(i, sgm, mvc)
roots.append(res[1])
assert_((res[3] <= 0), "LAPACK root finding dlasd4 failed to find \
the singular value %i" % i)
roots = np.array(roots)[::-1]
assert_((not np.any(np.isnan(roots)), "There are NaN roots"))
assert_allclose(SM, roots, atol=100*np.finfo(np.float64).eps,
rtol=100*np.finfo(np.float64).eps)
示例10: test_rot
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_rot():
# srot, drot from blas and crot and zrot from lapack.
for dtype in 'fdFD':
c = 0.6
s = 0.8
u = np.ones(4, dtype) * 3
v = np.ones(4, dtype) * 4
atol = 10**-(np.finfo(dtype).precision-1)
if dtype in 'fd':
rot = get_blas_funcs('rot', dtype=dtype)
f = 4
else:
rot = get_lapack_funcs('rot', dtype=dtype)
s *= -1j
v *= 1j
f = 4j
assert_allclose(rot(u, v, c, s), [[5, 5, 5, 5],
[0, 0, 0, 0]], atol=atol)
assert_allclose(rot(u, v, c, s, n=2), [[5, 5, 3, 3],
[0, 0, f, f]], atol=atol)
assert_allclose(rot(u, v, c, s, offx=2, offy=2),
[[3, 3, 5, 5], [f, f, 0, 0]], atol=atol)
assert_allclose(rot(u, v, c, s, incx=2, offy=2, n=2),
[[5, 3, 5, 3], [f, f, 0, 0]], atol=atol)
assert_allclose(rot(u, v, c, s, offx=2, incy=2, n=2),
[[3, 3, 5, 5], [0, f, 0, f]], atol=atol)
assert_allclose(rot(u, v, c, s, offx=2, incx=2, offy=2, incy=2, n=1),
[[3, 3, 5, 3], [f, f, 0, f]], atol=atol)
assert_allclose(rot(u, v, c, s, incx=-2, incy=-2, n=2),
[[5, 3, 5, 3], [0, f, 0, f]], atol=atol)
a, b = rot(u, v, c, s, overwrite_x=1, overwrite_y=1)
assert_(a is u)
assert_(b is v)
assert_allclose(a, [5, 5, 5, 5], atol=atol)
assert_allclose(b, [0, 0, 0, 0], atol=atol)
示例11: test_sygst
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_sygst():
seed(1234)
for ind, dtype in enumerate(REAL_DTYPES):
# DTYPES = <s,d> sygst
n = 10
potrf, sygst, syevd, sygvd = get_lapack_funcs(('potrf', 'sygst', 'syevd', 'sygvd'), dtype=dtype)
A = rand(n, n).astype(dtype)
A = (A + A.T)/2
# B must be positive definite
B = rand(n, n).astype(dtype)
B = (B + B.T)/2 + 2 * np.eye(n, dtype=dtype)
# Perform eig (sygvd)
_, eig_gvd, info = sygvd(A, B)
assert_(info == 0)
# Convert to std problem potrf
b, info = potrf(B)
assert_(info == 0)
a, info = sygst(A, b)
assert_(info == 0)
eig, _, info = syevd(a)
assert_(info == 0)
assert_allclose(eig, eig_gvd, rtol=1e-4)
示例12: test_hegst
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def test_hegst():
seed(1234)
for ind, dtype in enumerate(COMPLEX_DTYPES):
# DTYPES = <c,z> hegst
n = 10
potrf, hegst, heevd, hegvd = get_lapack_funcs(('potrf', 'hegst', 'heevd', 'hegvd'), dtype=dtype)
A = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
A = (A + A.conj().T)/2
# B must be positive definite
B = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
B = (B + B.conj().T)/2 + 2 * np.eye(n, dtype=dtype)
# Perform eig (hegvd)
_, eig_gvd, info = hegvd(A, B)
assert_(info == 0)
# Convert to std problem potrf
b, info = potrf(B)
assert_(info == 0)
a, info = hegst(A, b)
assert_(info == 0)
eig, _, info = heevd(a)
assert_(info == 0)
assert_allclose(eig, eig_gvd, rtol=1e-4)
示例13: coefficients_from_gauss
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def coefficients_from_gauss(points, weights):
"""Given the points and weights of a Gaussian quadrature rule, this method
reconstructs the recurrence coefficients alpha, beta as appearing in the tridiagonal
Jacobi matrix tri(b, a, b). This is using "Method 2--orthogonal reduction" from
(section 3.2 in [4]). The complexity is O(n^3); a faster method is suggested in 3.3
in [4].
"""
n = len(points)
assert n == len(weights)
flt = numpy.vectorize(float)
points = flt(points)
weights = flt(weights)
A = numpy.zeros((n + 1, n + 1))
# In sytrd, the _last_ row/column of Q are e, so put the values there.
a00 = 1.0
A[n, n] = a00
k = numpy.arange(n)
A[k, k] = points
A[n, :-1] = numpy.sqrt(weights)
A[:-1, n] = numpy.sqrt(weights)
# Implemented in
# <https://github.com/scipy/scipy/issues/7775>
sytrd, sytrd_lwork = get_lapack_funcs(("sytrd", "sytrd_lwork"))
# query lwork (optional)
lwork, info = sytrd_lwork(n + 1)
assert info == 0
_, d, e, _, info = sytrd(A, lwork=lwork)
assert info == 0
return d[:-1][::-1], e[::-1] ** 2
示例14: qr_destroy
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def qr_destroy(la):
"""
Return QR decomposition of `la[0]`. Content of `la` gets destroyed in the process.
Using this function should be less memory intense than calling `scipy.linalg.qr(la[0])`,
because the memory used in `la[0]` is reclaimed earlier.
"""
a = numpy.asfortranarray(la[0])
del la[0], la # now `a` is the only reference to the input matrix
m, n = a.shape
# perform q, r = QR(a); code hacked out of scipy.linalg.qr
logger.debug("computing QR of %s dense matrix" % str(a.shape))
geqrf, = get_lapack_funcs(('geqrf',), (a,))
qr, tau, work, info = geqrf(a, lwork=-1, overwrite_a=True)
qr, tau, work, info = geqrf(a, lwork=work[0], overwrite_a=True)
del a # free up mem
assert info >= 0
r = triu(qr[:n, :n])
if m < n: # rare case, #features < #topics
qr = qr[:, :m] # retains fortran order
gorgqr, = get_lapack_funcs(('orgqr',), (qr,))
q, work, info = gorgqr(qr, tau, lwork=-1, overwrite_a=True)
q, work, info = gorgqr(qr, tau, lwork=work[0], overwrite_a=True)
assert info >= 0, "qr failed"
assert q.flags.f_contiguous
return q, r
示例15: linalg_info
# 需要导入模块: from scipy.linalg import lapack [as 别名]
# 或者: from scipy.linalg.lapack import get_lapack_funcs [as 别名]
def linalg_info(method, dtype, method_dict=_linalg_info_base, dtype_dict=_linalg_info_dtype):
""" Faster BLAS/LAPACK methods to be returned without too many lookups an array checks
Parameters
----------
method : str
BLAS/LAPACK instance to retrieve
dtype : numpy.dtype
matrix corresponding data-type
Returns
-------
Function to call corresponding to method `method` in precision `dtype`.
Raises
------
ValueError: if the corresponding method is not present
"""
# dtype as string
dtype_str = dtype_dict[dtype]
# Get dictionary for methods
m_dict = method_dict[dtype_str]
# Check if it exists
if method in m_dict:
return m_dict[method]
# Get the corresponding method and store it before returning it
try:
func = get_lapack_funcs(method, dtype=dtype)
except ValueError as e:
if 'LAPACK function' in str(e):
func = get_blas_funcs(method, dtype=dtype)
else:
raise e
m_dict[method] = func
return func