本文整理汇总了Python中scipy.io.loadmat方法的典型用法代码示例。如果您正苦于以下问题:Python io.loadmat方法的具体用法?Python io.loadmat怎么用?Python io.loadmat使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.io
的用法示例。
在下文中一共展示了io.loadmat方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _load_selective_search_roidb
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def _load_selective_search_roidb(self, gt_roidb):
filename = os.path.abspath(os.path.join(cfg.DATA_DIR,
'selective_search_data',
self.name + '.mat'))
assert os.path.exists(filename), \
'Selective search data not found at: {}'.format(filename)
raw_data = sio.loadmat(filename)['boxes'].ravel()
box_list = []
for i in xrange(raw_data.shape[0]):
boxes = raw_data[i][:, (1, 0, 3, 2)] - 1
keep = ds_utils.unique_boxes(boxes)
boxes = boxes[keep, :]
keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
boxes = boxes[keep, :]
box_list.append(boxes)
return self.create_roidb_from_box_list(box_list, gt_roidb)
示例2: __init__
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def __init__(self, path, start_epoch):
if start_epoch is not 0:
stats_ = sio.loadmat(os.path.join(path,'stats.mat'))
data = stats_['data']
content = data[0,0]
self.trainObj = content['trainObj'][:,:start_epoch].squeeze().tolist()
self.trainTop1 = content['trainTop1'][:,:start_epoch].squeeze().tolist()
self.trainTop5 = content['trainTop5'][:,:start_epoch].squeeze().tolist()
self.valObj = content['valObj'][:,:start_epoch].squeeze().tolist()
self.valTop1 = content['valTop1'][:,:start_epoch].squeeze().tolist()
self.valTop5 = content['valTop5'][:,:start_epoch].squeeze().tolist()
if start_epoch is 1:
self.trainObj = [self.trainObj]
self.trainTop1 = [self.trainTop1]
self.trainTop5 = [self.trainTop5]
self.valObj = [self.valObj]
self.valTop1 = [self.valTop1]
self.valTop5 = [self.valTop5]
else:
self.trainObj = []
self.trainTop1 = []
self.trainTop5 = []
self.valObj = []
self.valTop1 = []
self.valTop5 = []
示例3: test
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def test():
y = sio.loadmat(here(__file__) + '/demo/ma1.mat')['y']
# The right results are:
# "biased": [-0.12250513 0.35963613 1.00586945 0.35963613 -0.12250513]
# "unbiaed": [-0.12444965 0.36246791 1.00586945 0.36246791 -0.12444965]
print cum2est(y, 2, 128, 0, 'unbiased')
print cum2est(y, 2, 128, 0, 'biased')
# For the 3rd cumulant:
# "biased": [-0.18203039 0.07751503 0.67113035 0.729953 0.07751503]
# "unbiased": [-0.18639911 0.07874543 0.67641484 0.74153955 0.07937539]
print cum3est(y, 2, 128, 0, 'biased', 1)
print cum3est(y, 2, 128, 0, 'unbiased', 1)
# For testing the 4th-order cumulant
# "biased": [-0.03642083 0.4755026 0.6352588 1.38975232 0.83791117 0.41641134 -0.97386322]
# "unbiased": [-0.04011388 0.48736793 0.64948927 1.40734633 0.8445089 0.42303979 -0.99724968]
print cum4est(y, 3, 128, 0, 'biased', 1, 1)
print cum4est(y, 3, 128, 0, 'unbiased', 1, 1)
示例4: get_predict_labels
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def get_predict_labels():
inputs = tf.placeholder("float", [None, 64, 64, 1])
is_training = tf.placeholder("bool")
prediction, _ = googlenet(inputs, is_training)
predict_labels = tf.argmax(prediction, 1)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
data = sio.loadmat("../data/dataset.mat")
testdata = data["test"] / 127.5 - 1.0
testlabel = data["testlabels"]
saver.restore(sess, "../save_para/.\\model.ckpt")
nums_test = testlabel.shape[1]
PREDICT_LABELS = np.zeros([nums_test])
for i in range(nums_test // BATCH_SIZE):
PREDICT_LABELS[i * BATCH_SIZE:i * BATCH_SIZE + BATCH_SIZE] = sess.run(predict_labels, feed_dict={inputs: testdata[i * BATCH_SIZE:i * BATCH_SIZE + BATCH_SIZE], is_training: False})
PREDICT_LABELS[(nums_test // BATCH_SIZE - 1) * BATCH_SIZE + BATCH_SIZE:] = sess.run(predict_labels, feed_dict={inputs: testdata[(nums_test // BATCH_SIZE - 1) * BATCH_SIZE + BATCH_SIZE:], is_training: False})
np.savetxt("../data/predict_labels.txt", PREDICT_LABELS)
开发者ID:MingtaoGuo,项目名称:Chinese-Character-and-Calligraphic-Image-Processing,代码行数:20,代码来源:confusionMatrix.py
示例5: export_one_scan
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def export_one_scan(scan_name):
pt = np.load(os.path.join(DATA_DIR, scan_name+'_pc.npz'))['pc']
np.savetxt(mode+'tmp.xyz', pt)
os.system("mv {}tmp.xyz {}tmp.xyzrgb".format(mode, mode))
point_cloud = o3d.io.read_point_cloud(mode+'tmp.xyzrgb')
pred_proposals = np.load(os.path.join(PRED_PATH, 'center'+scan_name+'_nms.npy'))
gt_bbox = sio.loadmat(os.path.join(PRED_PATH, 'center'+scan_name+'_gt.mat'))['gt']
bb =[]
if mode=='gt':
boundingboxes = gt_bbox
elif mode =='pred':
boundingboxes = pred_proposals
else:
print("model must be gt or pred")
return
for i in range(boundingboxes.shape[0]):
c = np.array(color_mapping[int(boundingboxes[i,-1])])/255.0
for _ in range(2):
bb.append(create_lineset(boundingboxes[i]+0.005*(np.random.rand()-0.5)*2, colors=c))
load_view_point([point_cloud] + bb, './viewpoint.json', window_name=scan_name+'_'+mode)
示例6: mat_load
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def mat_load(path, m_dict=None):
"""
Load mat files.
:param path:
:return:
"""
if m_dict is None:
data = sio.loadmat(path)
else:
data = sio.loadmat(path, m_dict)
return data
# endregion
# region File/Folder Names/Pathes
示例7: process
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def process(self):
mat = loadmat(self.raw_paths[0])['Problem'][0][0][2].tocsr().tocoo()
row = torch.from_numpy(mat.row).to(torch.long)
col = torch.from_numpy(mat.col).to(torch.long)
edge_index = torch.stack([row, col], dim=0)
edge_attr = torch.from_numpy(mat.data).to(torch.float)
if torch.all(edge_attr == 1.):
edge_attr = None
size = torch.Size(mat.shape)
if mat.shape[0] == mat.shape[1]:
size = None
num_nodes = mat.shape[0]
data = Data(edge_index=edge_index, edge_attr=edge_attr, size=size,
num_nodes=num_nodes)
if self.pre_transform is not None:
data = self.pre_transform(data)
torch.save(self.collate([data]), self.processed_paths[0])
示例8: _load_selective_search_IJCV_roidb
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def _load_selective_search_IJCV_roidb(self, gt_roidb):
IJCV_path = os.path.abspath(os.path.join(self.cache_path, '..',
'selective_search_IJCV_data',
'voc_' + self._year))
assert os.path.exists(IJCV_path), \
'Selective search IJCV data not found at: {}'.format(IJCV_path)
top_k = self.config['top_k']
box_list = []
for i in xrange(self.num_images):
filename = os.path.join(IJCV_path, self.image_index[i] + '.mat')
raw_data = sio.loadmat(filename)
box_list.append((raw_data['boxes'][:top_k, :]-1).astype(np.uint16))
return self.create_roidb_from_box_list(box_list, gt_roidb)
# evaluate detection results
示例9: _load_selective_search_roidb
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def _load_selective_search_roidb(self, gt_roidb):
filename = os.path.abspath(os.path.join(cfg.DATA_DIR,
'selective_search_data',
self.name + '.mat'))
assert os.path.exists(filename), \
'Selective search data not found at: {}'.format(filename)
raw_data = sio.loadmat(filename)['boxes'].ravel()
box_list = []
for i in xrange(raw_data.shape[0]):
boxes = raw_data[i][:, (1, 0, 3, 2)] - 1
keep = ds_utils.unique_boxes(boxes)
boxes = boxes[keep, :]
keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
boxes = boxes[keep, :]
box_list.append(boxes)
return self.create_roidb_from_box_list(box_list, gt_roidb)
示例10: _load_selective_search_roidb
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def _load_selective_search_roidb(self, gt_roidb):
filename = os.path.abspath(os.path.join(self._data_path,
'selective_search_data',
self.name + '.mat'))
assert os.path.exists(filename), \
'Selective search data not found at: {}'.format(filename)
raw_data = sio.loadmat(filename)['boxes'].ravel()
box_list = []
for i in xrange(raw_data.shape[0]):
boxes = raw_data[i][:, (1, 0, 3, 2)] - 1
keep = ds_utils.unique_boxes(boxes)
boxes = boxes[keep, :]
keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
boxes = boxes[keep, :]
box_list.append(boxes)
return self.create_roidb_from_box_list(box_list, gt_roidb)
示例11: __init__
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def __init__(self, opt):
super(DataSetUSRNet, self).__init__()
self.opt = opt
self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 96
self.sigma_max = self.opt['sigma_max'] if self.opt['sigma_max'] is not None else 25
self.scales = opt['scales'] if opt['scales'] is not None else [1,2,3,4]
self.sf_validation = opt['sf_validation'] if opt['sf_validation'] is not None else 3
#self.kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']
self.kernels = loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels'] # for validation
# -------------------
# get the path of H
# -------------------
self.paths_H = util.get_image_paths(opt['dataroot_H']) # return None if input is None
self.count = 0
示例12: __init__
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def __init__(self, dir, transform=None):
self.dir = dir
box_data = torch.from_numpy(loadmat(self.dir+'/box_data.mat')['boxes']).float()
op_data = torch.from_numpy(loadmat(self.dir+'/op_data.mat')['ops']).int()
sym_data = torch.from_numpy(loadmat(self.dir+'/sym_data.mat')['syms']).float()
#weight_list = torch.from_numpy(loadmat(self.dir+'/weights.mat')['weights']).float()
num_examples = op_data.size()[1]
box_data = torch.chunk(box_data, num_examples, 1)
op_data = torch.chunk(op_data, num_examples, 1)
sym_data = torch.chunk(sym_data, num_examples, 1)
#weight_list = torch.chunk(weight_list, num_examples, 1)
self.transform = transform
self.trees = []
for i in range(len(op_data)) :
boxes = torch.t(box_data[i])
ops = torch.t(op_data[i])
syms = torch.t(sym_data[i])
tree = Tree(boxes, ops, syms)
self.trees.append(tree)
示例13: __init__
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def __init__(self, dir, transform=None):
self.dir = dir
box_data = torch.from_numpy(loadmat(self.dir+u'/box_data.mat')[u'boxes']).float()
op_data = torch.from_numpy(loadmat(self.dir+u'/op_data.mat')[u'ops']).int()
sym_data = torch.from_numpy(loadmat(self.dir+u'/sym_data.mat')[u'syms']).float()
#weight_list = torch.from_numpy(loadmat(self.dir+'/weights.mat')['weights']).float()
num_examples = op_data.size()[1]
box_data = torch.chunk(box_data, num_examples, 1)
op_data = torch.chunk(op_data, num_examples, 1)
sym_data = torch.chunk(sym_data, num_examples, 1)
#weight_list = torch.chunk(weight_list, num_examples, 1)
self.transform = transform
self.trees = []
for i in xrange(len(op_data)) :
boxes = torch.t(box_data[i])
ops = torch.t(op_data[i])
syms = torch.t(sym_data[i])
tree = Tree(boxes, ops, syms)
self.trees.append(tree)
示例14: __getitem__
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def __getitem__(self, idx):
img_path = self.data_frame.iloc[idx, 0]
img = cv2.imread(img_path, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
x, y, w, h = self.data_frame.iloc[idx, 1:5]
l, t, ww, hh = enlarge_bbox(x, y, w, h, self.enlarge_factor)
r, b = l + ww, t + hh
img = img[t: b, l:r, :]
img = cv2.resize(img, (self.img_size, self.img_size))
img = img.astype(np.float32) - 127.5
img = nd.transpose(nd.array(img), (2, 0, 1))
label_path = img_path.replace('.jpg', '.mat')
label = sio.loadmat(label_path)
params_shape = label['Shape_Para'].astype(np.float32).ravel()
params_exp = label['Exp_Para'].astype(np.float32).ravel()
return img, params_shape, params_exp
示例15: _load_imdb
# 需要导入模块: from scipy import io [as 别名]
# 或者: from scipy.io import loadmat [as 别名]
def _load_imdb(self):
face_score_treshold = 3
dataset = loadmat(self.dataset_path)
image_names_array = dataset['imdb']['full_path'][0, 0][0]
gender_classes = dataset['imdb']['gender'][0, 0][0]
face_score = dataset['imdb']['face_score'][0, 0][0]
second_face_score = dataset['imdb']['second_face_score'][0, 0][0]
face_score_mask = face_score > face_score_treshold
second_face_score_mask = np.isnan(second_face_score)
unknown_gender_mask = np.logical_not(np.isnan(gender_classes))
mask = np.logical_and(face_score_mask, second_face_score_mask)
mask = np.logical_and(mask, unknown_gender_mask)
image_names_array = image_names_array[mask]
gender_classes = gender_classes[mask].tolist()
image_names = []
for image_name_arg in range(image_names_array.shape[0]):
image_name = image_names_array[image_name_arg][0]
image_names.append(image_name)
return dict(zip(image_names, gender_classes))