本文整理汇总了Python中scipy.hanning方法的典型用法代码示例。如果您正苦于以下问题:Python scipy.hanning方法的具体用法?Python scipy.hanning怎么用?Python scipy.hanning使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy
的用法示例。
在下文中一共展示了scipy.hanning方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ltsd_vad
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import hanning [as 别名]
def ltsd_vad(x, fs, threshold=9, winsize=8192):
# winsize based on sample rate
# 1024 for fs = 16000
orig_dtype = x.dtype
orig_scale_min = x.min()
orig_scale_max = x.max()
x = (x - x.min()) / (x.max() - x.min())
# works with 16 bit
x = x * (2 ** 15)
x = x.astype("int32")
window = sp.hanning(winsize)
ltsd = LTSD(winsize, window, 5)
s_vad = ltsd.compute(x)
# LTSD is 50% overlap, so each "step" covers 4096 samples
# +1 to cover the extra edge window
n_samples = int(((len(s_vad) + 1) * winsize) // 2)
time_s = n_samples / float(fs)
time_points = np.linspace(0, time_s, len(s_vad))
time_samples = (fs * time_points).astype(np.int32)
time_samples = time_samples
f_vad = np.zeros_like(x, dtype=np.bool)
offset = winsize
for n, (ss, es) in enumerate(zip(time_samples[:-1], time_samples[1:])):
sss = ss - offset
if sss < 0:
sss = 0
ses = es - offset
if ses < 0:
ses = 0
if s_vad[n + 1] < threshold:
f_vad[sss:ses] = False
else:
f_vad[sss:ses] = True
f_vad[ses:] = False
x = x.astype("float64")
x = x / float(2 ** 15)
x = x * (orig_scale_max - orig_scale_min) + orig_scale_min
x = x.astype(orig_dtype)
return x[f_vad], f_vad
示例2: stft
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import hanning [as 别名]
def stft(x, fs, framesz, hop):
framesamp = int(framesz*fs)
hopsamp = int(hop*fs)
w = scipy.hanning(framesamp)
X = scipy.array([scipy.fft(w*x[i:i+framesamp])
for i in range(0, len(x)-framesamp, hopsamp)])
return X
示例3: create_window
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import hanning [as 别名]
def create_window(size):
"""
A normalized Hanning window of given size. Useful for analyzing sinusoidal
signals.
"""
return normalized_window(scipy.hanning(size))
示例4: test_hanning
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import hanning [as 别名]
def test_hanning():
""" Compare scipy and Matlab hanning window.
Matlab returns a N+2 size window without first and last samples"""
hanning = scipy.hanning(N_FRAME+2)[1:-1]
hanning_m = eng.hanning(float(N_FRAME))
hanning_m = np.array(hanning_m._data)
assert_allclose(hanning, hanning_m, atol=ATOL)
示例5: test_hanning
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import hanning [as 别名]
def test_hanning():
""" Compare scipy and Matlab hanning window.
Matlab returns a N+2 size window without first and last samples.
A custom Octave function has been written to mimic this
behavior."""
hanning = scipy.hanning(N_FRAME+2)[1:-1]
hanning_m = np.squeeze(octave.feval('octave/ml_hanning.m', N_FRAME))
assert_allclose(hanning, hanning_m, atol=ATOL)
示例6: sinusoid_analysis
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import hanning [as 别名]
def sinusoid_analysis(X, input_sample_rate, resample_block=128, copy=True):
"""
Contruct a sinusoidal model for the input signal.
Parameters
----------
X : ndarray
Input signal to model
input_sample_rate : int
The sample rate of the input signal
resample_block : int, optional (default=128)
Controls the step size of the sinusoidal model
Returns
-------
frequencies_hz : ndarray
Frequencies for the sinusoids, in Hz.
magnitudes : ndarray
Magnitudes of sinusoids returned in ``frequencies``
References
----------
D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab",
Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/
"""
X = np.array(X, copy=copy)
resample_to = 8000
if input_sample_rate != resample_to:
if input_sample_rate % resample_to != 0:
raise ValueError("Input sample rate must be a multiple of 8k!")
# Should be able to use resample... ?
# resampled_count = round(len(X) * resample_to / input_sample_rate)
# X = sg.resample(X, resampled_count, window=sg.hanning(len(X)))
X = sg.decimate(X, input_sample_rate // resample_to, zero_phase=True)
step_size = 2 * round(resample_block / input_sample_rate * resample_to / 2.)
a, g, e = lpc_analysis(X, order=8, window_step=step_size,
window_size=2 * step_size)
f, m = lpc_to_frequency(a, g)
f_hz = f * resample_to / (2 * np.pi)
return f_hz, m
示例7: __init__
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import hanning [as 别名]
def __init__(self, signal_frames, window=scipy.hanning, positive_only=True):
"""
:param signal_frames: signal represented as SignalFrames instance
:param window: STFT window function - produces 1D window which will
be normalized
"""
self.signal_frames = signal_frames
x_frames = signal_frames.frames
w = normalized_window(window(signal_frames.frame_size))
# complex spectra of windowed blocks of signal - STFT
self.X_complex = np.fft.fft(x_frames * w)
# linear magnitude spectrogram
self.X_mag = abs(self.X_complex) / self.X_complex.shape[1]
# spectra of signal shifted in time
# This fakes looking at the previous frame shifted by one sample.
# In order to work only with one frame of size N and not N + 1, we fill the
# missing value with zero. This should not introduce a large error, since the
# borders of the amplitude frame will go to zero anyway due to applying a
# window function in the STFT tranform.
X_prev_time = np.fft.fft(shift_right(x_frames) * w)
# spectra shifted in frequency
X_prev_freq = shift_right(self.X_complex)
# cross-spectra - ie. spectra of cross-correlation between the
# respective time-domain signals
X_cross_time = cross_spectrum(self.X_complex, X_prev_time)
X_cross_freq = cross_spectrum(self.X_complex, X_prev_freq)
# instantaneous frequency estimates
# normalized frequencies in range [0.0, 1.0] - from DC to sample rate
self.X_inst_freqs = estimate_instant_freqs(X_cross_time)
# instantaneous group delay estimates
# relative coordinates within the frame with range [-0.5, 0.5] where
# 0.0 is the frame center
self.X_group_delays = estimate_group_delays(X_cross_freq)
if positive_only:
self.X_mag = positive_freq_magnitudes(self.X_mag)
self.X_complex, self.X_inst_freqs, self.X_group_delays = [
select_positive_freq_fft(values) for values in
[self.X_complex, self.X_inst_freqs, self.X_group_delays]
]