本文整理汇总了Python中scipy.constants.physical_constants方法的典型用法代码示例。如果您正苦于以下问题:Python constants.physical_constants方法的具体用法?Python constants.physical_constants怎么用?Python constants.physical_constants使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.constants
的用法示例。
在下文中一共展示了constants.physical_constants方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: darkcurrentnoise
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def darkcurrentnoise(inttime, detarea,temptr, Egap, DFM=0.5e-5):
"""Calculate the dark current noise given detector parameters
Args:
| inttime (scalar): integration time in seconds
| detarea (scalar): detector area in m2
| temptr (scalar): temperature in K
| Egap (scalar): bandgap in eV
| DFM (scalar): in units of nA/m2
Returns:
| n (scalar): dark current noise as number of electrons
Raises:
| No exception is raised.
"""
keV = const.physical_constants['Boltzmann constant in eV/K'][0]
ndarkcur = inttime * 2.55e15 * detarea * DFM * (temptr ** 1.5) * np.exp(-Egap/(2 * keV * temptr) )
return np.sqrt(ndarkcur)
############################################################
##
示例2: _eFieldCouplingDivE
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def _eFieldCouplingDivE(self, n1, l1, j1, mj1, n2, l2, j2, mj2, s=0.5):
# eFied coupling devided with E (witout actuall multiplication to getE)
# delta(mj1,mj2') delta(l1,l2+-1)
if ((abs(mj1 - mj2) > 0.1) or (abs(l1 - l2) != 1)):
return 0
# matrix element
result = self.atom.getRadialMatrixElement(n1, l1, j1,
n2, l2, j2,
s=s) *\
physical_constants["Bohr radius"][0] * C_e
sumPart = self.eFieldCouplingSaved.getAngular(l1, j1, mj1,
l2, j2, mj2,
s=s)
return result * sumPart
示例3: absolute_permittivity
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def absolute_permittivity(self):
r'''Absolute permittivity of the chemical at its current temperature,
in units of [farad/meter]. Those units are equivalent to
ampere^2*second^4/kg/m^3.
Examples
--------
>>> Chemical('water', T=293.15).absolute_permittivity
7.096684821859018e-10
'''
permittivity = self.permittivity
if permittivity is not None:
return permittivity*physical_constants['electric constant'][0]
return None
示例4: _prepare_kincalculation
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def _prepare_kincalculation(self, qz, hkl):
"""
prepare kinematic calculation by calculating some helper values
"""
rel = constants.physical_constants['classical electron radius'][0]
rel *= 1e10
k = self.exp.k0
# determine q-inplane
t = self.exp._transform
ql0 = t(self.lstack[0].material.Q(*hkl))
qinp = numpy.sqrt(ql0[0]**2 + ql0[1]**2)
# calculate needed angles
qv = numpy.asarray([t.inverse((ql0[0], ql0[1], q)) for q in qz])
Q = numpy.linalg.norm(qv, axis=1)
theta = numpy.arcsin(Q / (2 * k))
domega = numpy.arctan2(qinp, qz)
alphai, alphaf = (theta + domega, theta - domega)
# calculate structure factors
f = numpy.empty((len(self.lstack), len(qz)), dtype=numpy.complex)
fhkl = numpy.empty(len(self.lstack), dtype=numpy.complex)
for i, l in enumerate(self.lstack):
m = l.material
fhkl[i] = m.StructureFactor(m.Q(*hkl), en=self.energy) /\
m.lattice.UnitCellVolume()
f[i, :] = m.StructureFactorForQ(qv, en0=self.energy) /\
m.lattice.UnitCellVolume()
E = numpy.zeros(len(qz), dtype=numpy.complex)
return rel, alphai, alphaf, f, fhkl, E, t
示例5: set_photosensor_constants
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def set_photosensor_constants(strh5, initialise=True):
r"""Defining the constants that are necessary for calculation of photon energy, dark current rate, etc.
Args:
| strh5 (hdf5 file): hdf5 file that defines all simulation parameters
Returns:
| in strh5: (hdf5 file) updated data fields
Raises:
| No exception is raised.
Author: Mikhail V. Konnik, revised/ported by CJ Willers
Original source: http://arxiv.org/pdf/1412.4031.pdf
"""
#Sensor material constants
if (initialise):
strh5['rystare/material/Eg-eV'] = 0. #bandgap still to be computed at at temperature
# band gap energy, [eV], Varshni equation
strh5['rystare/material/Eg-eV'][...] = strh5['rystare/photondetector/varshni/Egap0'][()] - \
(strh5['rystare/photondetector/varshni/varA'][()] * (strh5['rystare/photondetector/operatingtemperature'][()] ** 2)) /\
(strh5['rystare/photondetector/varshni/varB'][()] + strh5['rystare/photondetector/operatingtemperature'][()])
if (initialise):
# do this always
strh5['rystare/photondetector/darkcurrent/fixedPatternNoise/limitnegative'] = True # only used with 'Janesick-Gaussian'
#Fundamental constants
strh5['rystare/constants/Boltzman-Constant-eV'] = const.physical_constants['Boltzmann constant in eV/K'][0] #Boltzman constant, [eV/K].
strh5['rystare/constants/Boltzman-Constant-JK'] = const.physical_constants['Boltzmann constant'][0] #Boltzman constant, [J/K].
strh5['rystare/constants/q'] = const.e # charge of an electron [C], coulomb
return strh5
######################################################################################
示例6: getRabiFrequency2
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def getRabiFrequency2(self,
n1, l1, j1, mj1,
n2, l2, j2, q,
electricFieldAmplitude,
s=0.5):
"""
Returns a Rabi frequency for resonant excitation with a given
electric field amplitude
Args:
n1,l1,j1,mj1 : state from which we are driving transition
n2,l2,j2 : state to which we are driving transition
q : laser polarization (-1,0,1 correspond to :math:`\\sigma^-`,
:math:`\\pi` and :math:`\\sigma^+` respectively)
electricFieldAmplitude : amplitude of electric field
driving (V/m)
s (float): optional, total spin angular momentum of state.
By default 0.5 for Alkali atoms.
Returns:
float:
Frequency in rad :math:`^{-1}`. If you want frequency
in Hz, divide by returned value by :math:`2\\pi`
"""
mj2 = mj1 + q
if abs(mj2) - 0.1 > j2:
return 0
dipole = self.getDipoleMatrixElement(n1, l1, j1, mj1,
n2, l2, j2, mj2, q,
s=s) *\
C_e * physical_constants["Bohr radius"][0]
freq = electricFieldAmplitude * abs(dipole) / hbar
return freq
示例7: getC3term
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def getC3term(self, n, l, j, n1, l1, j1, n2, l2, j2, s=0.5):
"""
C3 interaction term for the given two pair-states
Calculates :math:`C_3` intaraction term for
:math:`|n,l,j,n,l,j\\rangle \
\\leftrightarrow |n_1,l_1,j_1,n_2,l_2,j_2\\rangle`
Args:
n (int): principal quantum number
l (int): orbital angular momenutum
j (float): total angular momentum
n1 (int): principal quantum number
l1 (int): orbital angular momentum
j1 (float): total angular momentum
n2 (int): principal quantum number
l2 (int): orbital angular momentum
j2 (float): total angular momentum
s (float): optional, total spin angular momentum of state.
By default 0.5 for Alkali atoms.
Returns:
float: :math:`C_3 = \\frac{\\langle n,l,j |er\
|n_1,l_1,j_1\\rangle \
\\langle n,l,j |er|n_2,l_2,j_2\\rangle}{4\\pi\\varepsilon_0}`
(:math:`h` Hz m :math:`{}^3`).
"""
d1 = self.getRadialMatrixElement(n, l, j, n1, l1, j1, s=s)
d2 = self.getRadialMatrixElement(n, l, j, n2, l2, j2, s=s)
d1d2 = 1 / (4.0 * pi * epsilon_0) * d1 * d2 * C_e**2 *\
(physical_constants["Bohr radius"][0])**2
return d1d2
示例8: getZeemanEnergyShift
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def getZeemanEnergyShift(self, l, j, mj, magneticFieldBz, s=0.5):
r"""
Retuns linear (paramagnetic) Zeeman shift.
:math:`\mathcal{H}_P=\frac{\mu_B B_z}{\hbar}(\hat{L}_{\rm z}+\
g_{\rm S}S_{\rm z})`
Args:
l (int): orbital angular momentum
j (float): total angular momentum
mj (float): projection of total angular momentum alon z-axis
magneticFieldBz (float): applied magnetic field (alon z-axis
only) in units of T (Tesla)
s (float): optional, total spin angular momentum of state.
By default 0.5 for Alkali atoms.
Returns:
float: energy offset of the state (in J)
"""
prefactor = physical_constants["Bohr magneton"][0] * magneticFieldBz
gs = - physical_constants["electron g factor"][0]
sumOverMl = 0
for ml in np.linspace(mj - s, mj + s, round(2 * s + 1)):
if abs(ml) <= l + 0.1:
ms = mj - ml
sumOverMl += (ml + gs * ms) * \
abs(CG(l, ml, s, ms, j, mj))**2
return prefactor * sumOverMl
示例9: _atomLightAtomCoupling
# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import physical_constants [as 别名]
def _atomLightAtomCoupling(n, l, j, nn, ll, jj, n1, l1, j1, n2, l2, j2,
atom1, atom2=None, s=0.5, s2=None):
"""
Calculates radial part of atom-light coupling
This function might seem redundant, since similar function exist for
each of the atoms. Function that is not connected to specific
atomic species is provided in order to provides route to implement
inter-species coupling.
"""
if atom2 is None:
# if not explicitly inter-species, assume it's the same species
atom2 = atom1
if s2 is None:
s2 = s
# determine coupling
dl = abs(l - l1)
dj = abs(j - j1)
c1 = 0
if dl == 1 and (dj < 1.1):
c1 = 1 # dipole couplings1
elif (dl == 0 or dl == 2 or dl == 1) and(dj < 2.1):
c1 = 2 # quadrupole coupling
else:
return False
dl = abs(ll - l2)
dj = abs(jj - j2)
c2 = 0
if dl == 1 and (dj < 1.1):
c2 = 1 # dipole coupling
elif (dl == 0 or dl == 2 or dl == 1) and(dj < 2.1):
c2 = 2 # quadrupole coupling
else:
return False
radial1 = atom1.getRadialCoupling(n, l, j, n1, l1, j1, s=s)
radial2 = atom2.getRadialCoupling(nn, ll, jj, n2, l2, j2, s=s2)
# TO-DO: check exponent of the Boht radius (from where it comes?!)
coupling = C_e**2 / (4.0 * pi * epsilon_0) * radial1 * radial2 *\
(physical_constants["Bohr radius"][0])**(c1 + c2)
return coupling
# ================== Saving and loading calculations (START) ==================