当前位置: 首页>>代码示例>>Python>>正文


Python constants.c方法代码示例

本文整理汇总了Python中scipy.constants.c方法的典型用法代码示例。如果您正苦于以下问题:Python constants.c方法的具体用法?Python constants.c怎么用?Python constants.c使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.constants的用法示例。


在下文中一共展示了constants.c方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: population

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def population(self, Mole, Temp):
        """Calculate population for each level at given temperature"""
        RoTemp = np.reshape(Temp*1., (Temp.size, 1))
        Qr = self.weighti*np.exp(-(self.e_cm1*100*c*h)/(k*RoTemp))
        # RoPr = Qr/Ntotal  # This is for all transitions
        RoPr = Qr/(Qr.sum(axis=1).reshape(RoTemp.size, 1))  # only given trans.
        linet = []
        for xx in range(self.nt):
            gdu, gdl = self.weighti[self.tran_tag[xx][1:].astype(int)]
            _up = int(self.tran_tag[xx][1])
            _low = int(self.tran_tag[xx][2])
            Aei = self.ai[_up, _low]
            line_const = (c*10**2)**2*Aei*(gdu/gdl)*1.e-6*1.e14 /\
                         (8.*np.pi*(self.freq_array[xx]*1.e9)**2)
            # Hz->MHz,cm^2 ->nm^2
            # W = C.h*C.c*E_cm1[_low]*100.  # energy level above ground state
            "This is the function of calculating H2O intensity"
            line = (1.-np.exp(-h*(self.freq_array[xx]*1.e9) /
                              k/RoTemp))*line_const
            linet.append(line[:, 0]*RoPr[:, _low])  # line intensity non-LTE
        Ni_LTE = Mole.reshape((Mole.size, 1))*RoPr  # *0.75  # orth para ratio
        Ite_pop = [[Ni_LTE[i].reshape((self.ni, 1))] for i in range(Mole.size)]
        return Ite_pop

#import numba 
开发者ID:atmtools,项目名称:typhon,代码行数:27,代码来源:__init__.py

示例2: test_tlcorrection

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def test_tlcorrection(self):
        # testing long correction function
        x_for_long = np.array([20.,21.,22.,23.,24.,25.])
        y_for_long = np.array([1.0,1.0,1.0,1.0,1.0,1.0])

        nu0 = 1.0/(514.532)*1e9 #laser wavenumber at 514.532
        nu = 100.0*x_for_long # cm-1 to m-1
        T = 23.0+273.15 # the temperature in K

        x_long,long_res,eselong = rp.tlcorrection(x_for_long, y_for_long,23.0,514.532,correction = 'long',normalisation='area') # using the function
        t0 = nu0**3.0*nu/((nu0-nu)**4)
        t1= 1.0 - np.exp(-h*c*nu/(k*T)) # c in m/s  : t1 dimensionless
        long_calc= y_for_long*t0*t1 # pour les y
        long_calc = long_calc/np.trapz(long_calc,x_for_long) # area normalisation

        np.testing.assert_equal(long_res,long_calc)
        np.testing.assert_equal(x_for_long,x_long)

        x_long,long_res,eselong = rp.tlcorrection(x_for_long, y_for_long,23.0,514.532,correction = 'long',normalisation='no') # using the function
        t0 = nu0**3.0*nu/((nu0-nu)**4)
        t1= 1.0 - np.exp(-h*c*nu/(k*T)) # c in m/s  : t1 dimensionless
        long_calc= y_for_long*t0*t1 # pour les y

        np.testing.assert_equal(long_res,long_calc)
        np.testing.assert_equal(x_for_long,x_long) 
开发者ID:charlesll,项目名称:rampy,代码行数:27,代码来源:test_tlcorrection.py

示例3: __init__

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def __init__(self, where=None, resistivity=0., eps=0.):
        self.eps = 1. 
        omega0 = 1e-20           ## arbitrary low frequency that makes Lorentz model behave as Drude model
        omega_p = 3640e12       ## plasma frequency of aluminium
        #sigmafactor = 1
        self.pol = [
                #{'omega': 1e6*c*1e-20,   'gamma': 1e6*c*0.037908,   'sigma': 7.6347e+41},
                {'omega': omega0,   'gamma': 1e6*c*0.037908,   'sigma': 7.6347e+41 * 1e-20**2 * (1e6*c)**2 / omega0**2},
                {'omega': 1e6*c*0.13066, 'gamma': 1e6*c*0.26858,    'sigma': 1941},
                {'omega': 1e6*c*1.2453,  'gamma': 1e6*c*0.25165,    'sigma': 4.7065},
                {'omega': 1e6*c*1.4583,  'gamma': 1e6*c*1.0897,     'sigma': 11.396},
                {'omega': 1e6*c*2.8012,  'gamma': 1e6*c*2.7278,     'sigma': 0.55813}]
                #{'omega':1.39e9, 'gamma': 1.0e10, 'sigma':2.6e9}, 
                #{'omega': omega0, 'gamma': 25e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # (Lorentz) model for Al
                #{'omega': omega0, 'gamma': 1e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # stable? model at THz
                #{'omega':1.39e9, 'gamma': 1e10, 'sigma':1e10}, # Original value, use sigmafactor=1
                #]
        self.name = "Aluminium"
        self.shortname = "Al"
        self.where = where
#}}} 
开发者ID:FilipDominec,项目名称:python-meep-utils,代码行数:23,代码来源:meep_materials.py

示例4: shiftmp

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def shiftmp(freq, s11, shiftplanes):#{{{
    """ Adjusts the reflection phase like if the monitor planes were not centered.

    For symmetric metamaterial cell, this function is not needed. The symmetry requires that
    the monitor planes in front of and behind the mm cell are centered.

    However, for an asymmetric metamaterial, the correct position has to be found. Otherwise
    the Fresnel inversion gives negative imaginary part of N and/or negative real part of Z, which
    is quite spooky for passive medium. 
    
    Even such metamaterials, however, may be properly homogenized if we define the 
    position of monitor planes as a function of frequency. We can assume that:
    1) This optimum shift shall hold for all simulations with one or more unit cellnumber.
    2) When the wave direction is reversed (to get s21, s22 parameters), the shift should be negated.
    These rules should enable us to homogenize any asymmetric non-chiral metamaterial. 

    Note that this shifting is still an experimental technique and has to be tested out thoroughly. 
    """
    return np.array(s11) * np.exp(1j*np.array(shiftplanes)/(c/freq) * 2*pi * 2)
#}}} 
开发者ID:FilipDominec,项目名称:python-meep-utils,代码行数:22,代码来源:effparam.py

示例5: Responsivity

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def Responsivity(wavelength, quantumEffic):
    """
    Responsivity quantifies the amount of output seen per watt of radiant
    optical power input [1]. But, for this application it is interesting to
    define spectral responsivity that is the output per watt of monochromatic
    radiation.

    The model used here is based on Equations 7.114 in Dereniak's book.

    Args:
        | wavelength: spectral variable [m]
        | quantumEffic: spectral quantum efficiency

    Returns:
        | responsivity in [A/W]
    """

    return (const.e * wavelength * quantumEffic) / (const.h * const.c)


################################################################################
# 
开发者ID:NelisW,项目名称:pyradi,代码行数:24,代码来源:rydetector.py

示例6: plotSpectre

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def plotSpectre(transitions, eneval, spectre):
    """ plot the UV-visible spectrum using matplotlib. Absissa are converted in nm. """

    # lambda in nm
    lambdaval = [cst.h * cst.c / (val * cst.e) * 1.e9 for val in eneval]

    # plot gaussian spectra
    plt.plot(lambdaval, spectre, "r-", label = "spectre")

    # plot transitions
    plt.vlines([val[1] for val in transitions], \
               0., \
               [val[2] for val in transitions], \
               color = "blue", \
               label = "transitions" )

    plt.xlabel("lambda   /   nm")
    plt.ylabel("Arbitrary unit")
    plt.title("UV-visible spectra")
    plt.grid()
    plt.legend(fancybox = True, shadow = True)
    plt.show() 
开发者ID:gVallverdu,项目名称:myScripts,代码行数:24,代码来源:spectre.py

示例7: get_electron_wavelength

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def get_electron_wavelength(accelerating_voltage):
    """Calculates the (relativistic) electron wavelength in Angstroms for a
    given accelerating voltage in kV.

    Parameters
    ----------
    accelerating_voltage : float or 'inf'
        The accelerating voltage in kV. Values `numpy.inf` and 'inf' are
        also accepted.

    Returns
    -------
    wavelength : float
        The relativistic electron wavelength in Angstroms.

    """
    if accelerating_voltage in (np.inf, "inf"):
        return 0
    E = accelerating_voltage * 1e3
    wavelength = (
        h / math.sqrt(2 * m_e * e * E * (1 + (e / (2 * m_e * c * c)) * E)) * 1e10
    )
    return wavelength 
开发者ID:pyxem,项目名称:diffsims,代码行数:25,代码来源:sim_utils.py

示例8: Linewidth

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def Linewidth(Type, gct, Para):
    """#doppler width
    #Para[transient Freq[Hz], relative molecular mass[g/mol]]"""
    step1 = Para[0]/c*(2.*R*gct/(Para[1]*1.e-3))**0.5
    step1 = Para[0]/c*(2.*R*gct*np.log(2.)/(Para[1]*1.e-3))**0.5  # HWHM
    return int(step1.max()) 
开发者ID:atmtools,项目名称:typhon,代码行数:8,代码来源:lineshape.py

示例9: DopplerWind

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def DopplerWind(Temp, FreqGrid, Para, wind_v, shift_direction='red'):
    u"""#doppler width
    #Para[transient Freq[Hz], relative molecular mass[g/mol]]"""
    # step1 = Para[0]/c*(2.*R*gct/(Para[1]*1.e-3))**0.5
    # outy = np.exp(-(Freq-Para[0])**2/step1**2) / (step1*(np.pi**0.5))
    #wind_v = speed[:,10] 
    #Temp=temp[10]
    #FreqGrid = Fre_range_i[0]
    wind = wind_v.reshape(wind_v.size, 1)
    FreqGrid = FreqGrid.reshape(1, FreqGrid.size)
    deltav = Para[0]*wind/c
    if shift_direction.lower() == 'red':
        D_effect = (deltav)
    elif shift_direction.lower() == 'blue':
        D_effect = (-deltav)
    else:
        raise ValueError('Set shift direction to "red" or "blue".')

#    step1 = Para[0]/c*(2.*R*Temp*np.log(2.)/(Para[1]*1.e-3))**0.5  # HWHM
#    outy = np.exp(-np.log(2.)*(FreqGrid-Para[0])**2/step1**2) *\
#                 (np.log(2.)/np.pi)**0.5/step1
#    outy_d = np.exp(-np.log(2.)*(FreqGrid+D_effect-Para[0])**2/step1**2) *\
#                   (np.log(2.)/np.pi)**0.5/step1
    GD = np.sqrt(2*k*ac/Para[1]*Temp)/c*Para[0]
    step1 = GD
    outy_d = wofz((FreqGrid+D_effect-Para[0])/GD).real / np.sqrt(np.pi) / GD
    #plot(FreqGrid, outy)
    #plot(FreqGrid, outy_d[:,0])
    return outy_d 
开发者ID:atmtools,项目名称:typhon,代码行数:31,代码来源:lineshape.py

示例10: PopuSource

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def PopuSource(LowerPop, UpperPop, LowerDeg, UpperDeg, Freq_c):
    sij = (2.*h*Freq_c**3)/(c**2*(LowerPop*UpperDeg/UpperPop/LowerDeg-1.))
    return sij 
开发者ID:atmtools,项目名称:typhon,代码行数:5,代码来源:source_function.py

示例11: Bv_T

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def Bv_T(Freq, T):
    # brbr = 1  # .e7*1.e-4
    Bv_out = 2.*h*Freq**3/c**2/(np.exp(h*Freq/k/T)-1.)
    return Bv_out 
开发者ID:atmtools,项目名称:typhon,代码行数:6,代码来源:source_function.py

示例12: test_twomode

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def test_twomode(self):
        """Test if function returns two-mode squeezing parameters that correctly reconstruct the
        input normal mode frequencies."""
        w = -k * self.T / (0.5 * h * c * 100) * np.log(np.tanh(self.t))
        assert np.allclose(w, self.w) 
开发者ID:XanaduAI,项目名称:strawberryfields,代码行数:7,代码来源:test_vibronic.py

示例13: __init__

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def __init__(self, comment="", simtime=30e-9, resolution=5e-3, cellnumber=1, padding=9e-3, radius=33.774e-3, height=122.36e-3 ,  Kx=0, Ky=0, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation
        self.simulation_name = "HollowCyl"    
        
        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Obligatory parameters (used in the simulation)
        self.pml_thickness = padding/2
        self.simtime = simtime      # [s]HollowCyl_simtime=3.000e-08_height=3.000e-02
        self.src_freq, self.src_width = 3e9, 10e9     # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (.1e9, 8e9)     # Which frequencies will be saved to disk
        self.size_x = 2*radius+padding*2
        self.size_y = 2*radius+padding*2
        self.size_z = height+padding*2

        ## Define materials
        f_c = c / np.pi/self.resolution/meep_utils.meep.use_Courant() 
        self.materials = []  
        au = meep_materials.material_Au(where=self.where_metal)
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)
        #self.materials += [meep_materials.material_DrudeMetal(lfconductivity=1e4, f_c=f_c, gamma_factor=.5, epsplus=0, where=self.where_metal)]  

        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials() 
开发者ID:FilipDominec,项目名称:python-meep-utils,代码行数:28,代码来源:cylindrical_cavity.py

示例14: __init__

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def __init__(self, comment="", simtime=100e-15, resolution=100e-9, size_x=16e-6, size_y=5e-6, size_z=5e-6,
            metalthick=.5e-6, apdisty=0e-6, apdistx=14e-6, aprad=.1e-6, monzd=123.456e-6, electronmass=1, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "PlasmonsFilm"    
        self.src_freq = 400e12     # [Hz] (note: srcwidth irrelevant for continuous_source)
        #self.interesting_frequencies = (0e9, 2000e9)     # Which frequencies will be saved to disk (irrelevant here) XXX
        self.pml_thickness = 1e-6

        self.size_x = size_x 
        self.size_y = size_y
        self.size_z = size_z
        substrate_z = size_x / 3
        self.simtime = simtime      # [s]
        self.Kx = 0; self.Ky = 0; self.padding=0
        self.register_locals(locals(), other_args)          ## Remember the parameters
        ## Define materials
        f_c = c / np.pi/self.resolution/meep_utils.meep.use_Courant()

        self.materials   = [meep_materials.material_Au(where=self.where_metal)]  
        self.materials[0].pol[0]['sigma'] /= electronmass ## effective thin layer TODO test+tune+comment
        self.materials[0].pol[1:] = []      ## rm other osc

        #self.materials   = [meep_materials.material_DrudeMetal(lfconductivity=1e8, f_c=.2*f_c, where = self.where_metal)]  
        #self.materials   += [meep_materials.material_dielectric(where=self.where_diel, eps=2.)]  
        #self.TestMaterials()
        #self.materials   += [meep_materials.material_Au(where=None)]  
        meep_utils.plot_eps(self.materials, mark_freq=[f_c])

        ## Test the validity of the model
        for material in self.materials: self.fix_material_stability(material, f_c=2e15, verbose=1)
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials() 
开发者ID:FilipDominec,项目名称:python-meep-utils,代码行数:37,代码来源:plasmons.py

示例15: right_tick_function

# 需要导入模块: from scipy import constants [as 别名]
# 或者: from scipy.constants import c [as 别名]
def right_tick_function(p): return p/(cellsize/c)/1e12 
开发者ID:FilipDominec,项目名称:python-meep-utils,代码行数:3,代码来源:plot_cdh.py


注:本文中的scipy.constants.c方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。