本文整理汇总了Python中scipy._lib._util.check_random_state方法的典型用法代码示例。如果您正苦于以下问题:Python _util.check_random_state方法的具体用法?Python _util.check_random_state怎么用?Python _util.check_random_state使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy._lib._util
的用法示例。
在下文中一共展示了_util.check_random_state方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def __init__(self, stepsize=0.5, random_state=None):
self.stepsize = stepsize
self.random_state = check_random_state(random_state)
示例2: __init__
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def __init__(self, seed=None):
super(multi_rv_generic, self).__init__()
self._random_state = check_random_state(seed)
示例3: random_state
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def random_state(self, seed):
self._random_state = check_random_state(seed)
示例4: _get_random_state
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def _get_random_state(self, random_state):
if random_state is not None:
return check_random_state(random_state)
else:
return self._random_state
示例5: random_state
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def random_state(self, seed):
self.dist._random_state = check_random_state(seed)
示例6: __init__
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def __init__(self, seed=None):
super(rv_generic, self).__init__()
# figure out if _stats signature has 'moments' keyword
sign = _getargspec(self._stats)
self._stats_has_moments = ((sign[2] is not None) or
('moments' in sign[0]))
self._random_state = check_random_state(seed)
示例7: cwt_matrix
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def cwt_matrix(n_rows, n_columns, seed=None):
r""""
Generate a matrix S for the Clarkson-Woodruff sketch.
Given the desired size of matrix, the method returns a matrix S of size
(n_rows, n_columns) where each column has all the entries set to 0 less one
position which has been randomly set to +1 or -1 with equal probability.
Parameters
----------
n_rows: int
Number of rows of S
n_columns: int
Number of columns of S
seed : None or int or `numpy.random.RandomState` instance, optional
This parameter defines the ``RandomState`` object to use for drawing
random variates.
If None (or ``np.random``), the global ``np.random`` state is used.
If integer, it is used to seed the local ``RandomState`` instance.
Default is None.
Returns
-------
S : (n_rows, n_columns) array_like
Notes
-----
Given a matrix A, with probability at least 9/10,
.. math:: ||SA|| == (1 \pm \epsilon)||A||
Where epsilon is related to the size of S
"""
S = np.zeros((n_rows, n_columns))
nz_positions = np.random.randint(0, n_rows, n_columns)
rng = check_random_state(seed)
values = rng.choice([1, -1], n_columns)
for i in range(n_columns):
S[nz_positions[i]][i] = values[i]
return S
示例8: test_check_random_state
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def test_check_random_state():
# If seed is None, return the RandomState singleton used by np.random.
# If seed is an int, return a new RandomState instance seeded with seed.
# If seed is already a RandomState instance, return it.
# Otherwise raise ValueError.
rsi = check_random_state(1)
assert_equal(type(rsi), np.random.RandomState)
rsi = check_random_state(rsi)
assert_equal(type(rsi), np.random.RandomState)
rsi = check_random_state(None)
assert_equal(type(rsi), np.random.RandomState)
assert_raises(ValueError, check_random_state, 'a')
示例9: test_random_state
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def test_random_state(self):
# ensure that the global random state is not modified because
# the directed Hausdorff algorithm uses randomization
rs = check_random_state(None)
old_global_state = rs.get_state()
directed_hausdorff(self.path_1, self.path_2)
rs2 = check_random_state(None)
new_global_state = rs2.get_state()
assert_equal(new_global_state, old_global_state)
示例10: test_random_state_None_int
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def test_random_state_None_int(self):
# check that seed values of None or int do not alter global
# random state
for seed in [None, 27870671]:
rs = check_random_state(None)
old_global_state = rs.get_state()
directed_hausdorff(self.path_1, self.path_2, seed)
rs2 = check_random_state(None)
new_global_state = rs2.get_state()
assert_equal(new_global_state, old_global_state)
示例11: _perm_test
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def _perm_test(
test, sim, n=100, p=1, noise=False, reps=1000, workers=1, random_state=None
):
r"""
Helper function that calculates the statistical.
Parameters
----------
test : callable()
The independence test class requested.
sim : callable()
The simulation used to generate the input data.
reps : int, optional (default: 1000)
The number of replications used to estimate the null distribution
when using the permutation test used to calculate the p-value.
workers : int, optional (default: -1)
The number of cores to parallelize the p-value computation over.
Supply -1 to use all cores available to the Process.
Returns
-------
null_dist : list
The approximated null distribution.
"""
# set seeds
random_state = check_random_state(random_state)
rngs = [
np.random.RandomState(random_state.randint(1 << 32, size=4, dtype=np.uint32))
for _ in range(reps)
]
# use all cores to create function that parallelizes over number of reps
mapwrapper = MapWrapper(workers)
parallelp = _ParallelP(test=test, sim=sim, n=n, p=p, noise=noise, rngs=rngs)
alt_dist, null_dist = map(list, zip(*list(mapwrapper(parallelp, range(reps)))))
alt_dist = np.array(alt_dist)
null_dist = np.array(null_dist)
return alt_dist, null_dist
示例12: _perm_test_3samp
# 需要导入模块: from scipy._lib import _util [as 别名]
# 或者: from scipy._lib._util import check_random_state [as 别名]
def _perm_test_3samp(
test, n=100, epsilon=1, weight=0, case=1, reps=1000, workers=1, random_state=None
):
r"""
Helper function that calculates the statistical.
Parameters
----------
test : callable()
The independence test class requested.
sim : callable()
The simulation used to generate the input data.
reps : int, optional (default: 1000)
The number of replications used to estimate the null distribution
when using the permutation test used to calculate the p-value.
workers : int, optional (default: -1)
The number of cores to parallelize the p-value computation over.
Supply -1 to use all cores available to the Process.
Returns
-------
null_dist : list
The approximated null distribution.
"""
# set seeds
random_state = check_random_state(random_state)
rngs = [
np.random.RandomState(random_state.randint(1 << 32, size=4, dtype=np.uint32))
for _ in range(reps)
]
# use all cores to create function that parallelizes over number of reps
mapwrapper = MapWrapper(workers)
parallelp = _ParallelP3Samp(test, n, epsilon, weight, case, rngs)
alt_dist, null_dist = map(list, zip(*list(mapwrapper(parallelp, range(reps)))))
alt_dist = np.array(alt_dist)
null_dist = np.array(null_dist)
return alt_dist, null_dist