本文整理汇总了Python中rsa.PrivateKey方法的典型用法代码示例。如果您正苦于以下问题:Python rsa.PrivateKey方法的具体用法?Python rsa.PrivateKey怎么用?Python rsa.PrivateKey使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rsa
的用法示例。
在下文中一共展示了rsa.PrivateKey方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: to_pem
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def to_pem(self, pem_format='PKCS8'):
if isinstance(self._prepared_key, pyrsa.PrivateKey):
der = self._prepared_key.save_pkcs1(format='DER')
if pem_format == 'PKCS8':
pkcs8_der = rsa_private_key_pkcs1_to_pkcs8(der)
pem = pyrsa_pem.save_pem(pkcs8_der, pem_marker='PRIVATE KEY')
elif pem_format == 'PKCS1':
pem = pyrsa_pem.save_pem(der, pem_marker='RSA PRIVATE KEY')
else:
raise ValueError("Invalid pem format specified: %r" % (pem_format,))
else:
if pem_format == 'PKCS8':
pkcs1_der = self._prepared_key.save_pkcs1(format="DER")
pkcs8_der = rsa_public_key_pkcs1_to_pkcs8(pkcs1_der)
pem = pyrsa_pem.save_pem(pkcs8_der, pem_marker='PUBLIC KEY')
elif pem_format == 'PKCS1':
der = self._prepared_key.save_pkcs1(format='DER')
pem = pyrsa_pem.save_pem(der, pem_marker='RSA PUBLIC KEY')
else:
raise ValueError("Invalid pem format specified: %r" % (pem_format,))
return pem
示例2: genCertAndPriv
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def genCertAndPriv(certFile, privFile, e, n, d):
e = E
p = n - 1
q = n - 1
exp1 = e
exp2 = d
coef = e
r = rsa.PrivateKey(n, e, d, p, q, exp1=e, exp2=e,coef=e)
r.exp1 = 0
r.exp2 = 0
r.coef = 0
r.p = 0
r.q = 0
open(privFile, 'wt').write(r.save_pkcs1())
a =rsa.PublicKey(n,e)
replaceKey(certFile,a._save_pkcs1_der())
示例3: PrivateKey
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def PrivateKey(d, n):
"""
@param d: {long | str}private exponent
@param n: {long | str}modulus
"""
if isinstance(d, bytes):
d = rsa.transform.bytes2int(d)
if isinstance(n, bytes):
n = rsa.transform.bytes2int(n)
return {'d': d, 'n': n}
示例4: decryptRSA
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def decryptRSA(message, privateKey):
"""
@summary: wrapper around rsa.core.decrypt_int function
@param message: {str} source message
@param publicKey: {rsa.PrivateKey}
"""
return rsa.transform.int2bytes(
rsa.core.decrypt_int(
rsa.transform.bytes2int(message), privateKey['d'], privateKey['n']))
示例5: getServerCertBytes
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def getServerCertBytes(self):
sigHash = signRSA(
self.getSignatureHash()[::-1],
PrivateKey(
d=ServerSecurity._TERMINAL_SERVICES_PRIVATE_EXPONENT_[::-1],
n=ServerSecurity._TERMINAL_SERVICES_MODULUS_[::-1]))[::-1]
sigBlobProps = b'\x08\x00\x48\x00'
return ServerSecurity.SERVER_PUBKEY_PROPS_1+ServerSecurity.SERVER_PUBKEY_PROPS_2 + \
self._exponentBytes+self._modulusBytes+ServerSecurity.PADDING+sigBlobProps+sigHash+ServerSecurity.PADDING
示例6: pack_license_key
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def pack_license_key(data, privkey_args):
"""
Pack a dictionary of license key data to a string. You typically call this
function on a server, when a user purchases a license. Eg.:
lk_contents = pack_license_key({'email': 'some@user.com'}, ...)
The parameter `privkey_args` is a dictionary containing values for the RSA
fields "n", "e", "d", "p" and "q". You can generate it with fbs's command
`init_licensing`.
The resulting string is signed to prevent the end user from changing it.
Use the function `unpack_license_key` below to reconstruct `data` from it.
This also verifies that the string was not tampered with.
This function has two non-obvious caveats:
1) It does not obfuscate the data. If `data` contains "key": "value", then
"key": "value" is also visible in the resulting string.
2) Calling this function twice with the same arguments will result in the
same string. This may be undesirable when you generate multiple license keys
for the same user. A simple workaround for this is to add a unique parameter
to `data`, such as the current timestamp.
"""
data_bytes = _dumpb(data)
signature = rsa.sign(data_bytes, PrivateKey(**privkey_args), 'SHA-1')
result = dict(data)
if 'key' in data:
raise ValueError('Data must not contain an element called "key"')
result['key'] = b64encode(signature).decode('ascii')
return json.dumps(result)
示例7: _process_jwk
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def _process_jwk(self, jwk_dict):
if not jwk_dict.get('kty') == 'RSA':
raise JWKError("Incorrect key type. Expected: 'RSA', Received: %s" % jwk_dict.get('kty'))
e = base64_to_long(jwk_dict.get('e'))
n = base64_to_long(jwk_dict.get('n'))
if 'd' not in jwk_dict:
return pyrsa.PublicKey(e=e, n=n)
else:
d = base64_to_long(jwk_dict.get('d'))
extra_params = ['p', 'q', 'dp', 'dq', 'qi']
if any(k in jwk_dict for k in extra_params):
# Precomputed private key parameters are available.
if not all(k in jwk_dict for k in extra_params):
# These values must be present when 'p' is according to
# Section 6.3.2 of RFC7518, so if they are not we raise
# an error.
raise JWKError('Precomputed private key parameters are incomplete.')
p = base64_to_long(jwk_dict['p'])
q = base64_to_long(jwk_dict['q'])
return pyrsa.PrivateKey(e=e, n=n, d=d, p=p, q=q)
else:
p, q = _rsa_recover_prime_factors(n, e, d)
return pyrsa.PrivateKey(n=n, e=e, d=d, p=p, q=q)
示例8: _load_rsa_private_key
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def _load_rsa_private_key(pem):
"""PEM encoded PKCS#8 private key -> ``rsa.PrivateKey``.
ADB uses private RSA keys in pkcs#8 format. The ``rsa`` library doesn't
support them natively. Do some ASN unwrapping to extract naked RSA key
(in der-encoded form).
See:
* https://www.ietf.org/rfc/rfc2313.txt
* http://superuser.com/a/606266
Parameters
----------
pem : str
The private key to be loaded
Returns
-------
rsa.key.PrivateKey
The loaded private key
"""
try:
der = rsa.pem.load_pem(pem, 'PRIVATE KEY')
keyinfo, _ = decoder.decode(der)
if keyinfo[1][0] != univ.ObjectIdentifier('1.2.840.113549.1.1.1'):
raise ValueError('Not a DER-encoded OpenSSL private RSA key')
private_key_der = keyinfo[2].asOctets()
except IndexError:
raise ValueError('Not a DER-encoded OpenSSL private RSA key')
return rsa.PrivateKey.load_pkcs1(private_key_der, format='DER')
示例9: __init__
# 需要导入模块: import rsa [as 别名]
# 或者: from rsa import PrivateKey [as 别名]
def __init__(self, key, algorithm):
if algorithm not in ALGORITHMS.RSA:
raise JWKError('hash_alg: %s is not a valid hash algorithm' % algorithm)
self.hash_alg = {
ALGORITHMS.RS256: self.SHA256,
ALGORITHMS.RS384: self.SHA384,
ALGORITHMS.RS512: self.SHA512
}.get(algorithm)
self._algorithm = algorithm
if isinstance(key, dict):
self._prepared_key = self._process_jwk(key)
return
if isinstance(key, (pyrsa.PublicKey, pyrsa.PrivateKey)):
self._prepared_key = key
return
if isinstance(key, six.string_types):
key = key.encode('utf-8')
if isinstance(key, six.binary_type):
try:
self._prepared_key = pyrsa.PublicKey.load_pkcs1(key)
except ValueError:
try:
self._prepared_key = pyrsa.PublicKey.load_pkcs1_openssl_pem(key)
except ValueError:
try:
self._prepared_key = pyrsa.PrivateKey.load_pkcs1(key)
except ValueError:
try:
der = pyrsa_pem.load_pem(key, b'PRIVATE KEY')
try:
pkcs1_key = rsa_private_key_pkcs8_to_pkcs1(der)
except PyAsn1Error:
# If the key was encoded using the old, invalid,
# encoding then pyasn1 will throw an error attempting
# to parse the key.
pkcs1_key = _legacy_private_key_pkcs8_to_pkcs1(der)
self._prepared_key = pyrsa.PrivateKey.load_pkcs1(pkcs1_key, format="DER")
except ValueError as e:
raise JWKError(e)
return
raise JWKError('Unable to parse an RSA_JWK from key: %s' % key)