本文整理汇总了Python中rpy2.robjects.pandas2ri.activate方法的典型用法代码示例。如果您正苦于以下问题:Python pandas2ri.activate方法的具体用法?Python pandas2ri.activate怎么用?Python pandas2ri.activate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rpy2.robjects.pandas2ri
的用法示例。
在下文中一共展示了pandas2ri.activate方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: query_log_source
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def query_log_source(source, time_filter, time_column):
from rpy2.robjects import pandas2ri
cutoff = f"DATEADD(day, -{time_filter}, CURRENT_TIMESTAMP())"
query = f"SELECT * FROM {source} WHERE {time_column} > {cutoff};"
try:
data = list(db.fetch(query))
except Exception as e:
log.error("Failed to query log source: ", e)
f = pack(data)
frame = pandas.DataFrame(f)
pandas2ri.activate()
r_dataframe = pandas2ri.py2rpy(frame)
return r_dataframe
示例2: _build
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def _build(self, **kwargs):
from rpy2.robjects import numpy2ri, pandas2ri
match_it = self.install_matchit()
self.num_treatments = kwargs["num_treatments"]
self.batch_size = kwargs["batch_size"]
self.match_it = match_it
numpy2ri.activate()
pandas2ri.activate()
return super(PSM, self)._build(**kwargs)
示例3: _build
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def _build(self, **kwargs):
from rpy2.robjects import numpy2ri, pandas2ri
n_jobs = int(np.rint(kwargs["n_jobs"]))
bart = self.install_bart()
bart.set_bart_machine_num_cores(n_jobs)
self.bart = bart
numpy2ri.activate()
pandas2ri.activate()
return None
示例4: dtwWrapper
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def dtwWrapper(data, rows, columns, k):
'''
wrapper function for dynamic time warping.
includes use of exponential adaptive tuning function
with temporal correlation if k > 0
'''
# not explicitly called, but needs to be in R environment
DTW = importr("dtw")
# create a data frame of zeros of size number of ids x number of ids
# fill it with the calculated distance metric for each pair wise comparison
df_ = pd.DataFrame(index=rows,
columns=columns)
df_ = df_.fillna(0.0).astype(np.float64)
# fill the array with dtw-distance values
pandas2ri.activate()
for i in rows:
E.info("DTW %s" % i)
for j in columns:
series1 = data.loc[i].values.tolist()
series2 = data.loc[j].values.tolist()
DTW_value = (R.dtw(series1,
series2)).rx('distance')[0][0]
cort_value = temporalCorrelate(series1, series2)
tuned_value = adaptiveTune(cort_value, k)
time_dist = DTW_value * tuned_value
df_.loc[i][j] = float(time_dist)
df_[j][i] = float(time_dist)
return df_
示例5: testActivate
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def testActivate(self):
#FIXME: is the following still making sense ?
assert rpyp.py2rpy != robjects.conversion.py2rpy
l = len(robjects.conversion.py2rpy.registry)
k = set(robjects.conversion.py2rpy.registry.keys())
rpyp.activate()
assert len(conversion.py2rpy.registry) > l
rpyp.deactivate()
assert len(conversion.py2rpy.registry) == l
assert set(conversion.py2rpy.registry.keys()) == k
示例6: testActivateTwice
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def testActivateTwice(self):
#FIXME: is the following still making sense ?
assert rpyp.py2rpy != robjects.conversion.py2rpy
l = len(robjects.conversion.py2rpy.registry)
k = set(robjects.conversion.py2rpy.registry.keys())
rpyp.activate()
rpyp.deactivate()
rpyp.activate()
assert len(conversion.py2rpy.registry) > l
rpyp.deactivate()
assert len(conversion.py2rpy.registry) == l
assert set(conversion.py2rpy.registry.keys()) == k
示例7: Kriging_Interpolation_Array
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def Kriging_Interpolation_Array(input_array, x_vector, y_vector):
"""
Interpolate data in an array using Ordinary Kriging
Reference: https://cran.r-project.org/web/packages/automap/automap.pdf
"""
# Total values in array
n_values = np.isfinite(input_array).sum()
# Load function
pandas2ri.activate()
robjects.r('''
library(gstat)
library(sp)
library(automap)
kriging_interpolation <- function(x_vec, y_vec, values_arr,
n_values){
# Parameters
shape <- dim(values_arr)
counter <- 1
df <- data.frame(X=numeric(n_values),
Y=numeric(n_values),
INFZ=numeric(n_values))
# Save values into a data frame
for (i in seq(shape[2])) {
for (j in seq(shape[1])) {
if (is.finite(values_arr[j, i])) {
df[counter,] <- c(x_vec[i], y_vec[j], values_arr[j, i])
counter <- counter + 1
}
}
}
# Grid
coordinates(df) = ~X+Y
int_grid <- expand.grid(x_vec, y_vec)
names(int_grid) <- c("X", "Y")
coordinates(int_grid) = ~X+Y
gridded(int_grid) = TRUE
# Kriging
krig_output <- autoKrige(INFZ~1, df, int_grid)
# Array
values_out <- matrix(krig_output$krige_output$var1.pred,
nrow=length(y_vec),
ncol=length(x_vec),
byrow = TRUE)
return(values_out)
}
''')
kriging_interpolation = robjects.r['kriging_interpolation']
# Execute kriging function and get array
r_array = kriging_interpolation(x_vector, y_vector, input_array, n_values)
array_out = np.array(r_array)
# Return
return array_out
示例8: array_interpolation
# 需要导入模块: from rpy2.robjects import pandas2ri [as 别名]
# 或者: from rpy2.robjects.pandas2ri import activate [as 别名]
def array_interpolation(lon_ls, lat_ls, infz_array_in, min_infz,
return_single_value):
'''
Interpolate missing values in an array using kriging in R
'''
# Replace values smaller than the minimum
infz_array_in[infz_array_in < min_infz] = np.nan
# Total values in array
n_values = np.isfinite(infz_array_in).sum()
# Load function
pandas2ri.activate()
robjects.r('''
library(gstat)
library(sp)
library(automap)
kriging_interpolation <- function(x_vec, y_vec, values_arr,
n_values){
# Parameters
shape <- dim(values_arr)
counter <- 1
df <- data.frame(X=numeric(n_values),
Y=numeric(n_values),
INFZ=numeric(n_values))
# Save values into a data frame
for (i in seq(shape[2])) {
for (j in seq(shape[1])) {
if (is.finite(values_arr[j, i])) {
df[counter,] <- c(x_vec[i], y_vec[j], values_arr[j, i])
counter <- counter + 1
}
}
}
# Grid
coordinates(df) = ~X+Y
int_grid <- expand.grid(x_vec, y_vec)
names(int_grid) <- c("X", "Y")
coordinates(int_grid) = ~X+Y
gridded(int_grid) = TRUE
# Kriging
krig_output <- autoKrige(INFZ~1, df, int_grid)
# Array
values_out <- matrix(krig_output$krige_output$var1.pred,
nrow=length(y_vec),
ncol=length(x_vec),
byrow = TRUE)
return(values_out)
}
''')
kriging_interpolation = robjects.r['kriging_interpolation']
# Execute kriging function and get array
r_array = kriging_interpolation(lon_ls, lat_ls, infz_array_in, n_values)
infz_array_out = np.array(r_array)
# Return
if not return_single_value:
return infz_array_out
else:
x, y = return_single_value
return infz_array_out[y, x]