本文整理汇总了Python中rpy2.robjects.FloatVector方法的典型用法代码示例。如果您正苦于以下问题:Python robjects.FloatVector方法的具体用法?Python robjects.FloatVector怎么用?Python robjects.FloatVector使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rpy2.robjects
的用法示例。
在下文中一共展示了robjects.FloatVector方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: sample_coM3
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def sample_coM3(invariants):
"""
Calculates sample third order co-moment matrix
Taps into the R package PerformanceAnalytics through rpy2
:param invariants: sample data of market invariants
:type invariants: pd.Dataframe
:param frequency: time horizon of projection, default set ot 252 days
:type frequency: int
:return: sample skew dataframe
"""
importr('PerformanceAnalytics')
if not isinstance(invariants, pd.DataFrame):
warnings.warn("invariants not a pd.Dataframe", RuntimeWarning)
invariants = pd.DataFrame(invariants)
p = invariants.shape[1]
coskew_function = robjects.r('M3.MM')
r_inv_vec = robjects.FloatVector(np.concatenate(invariants.values))
r_invariants = robjects.r.matrix(r_inv_vec,nrow=p,ncol=p)
r_M3 = coskew_function(r_invariants)
return np.matrix(r_M3)
示例2: sample_coM4
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def sample_coM4(invariants):
"""
Calculates sample fourth order co-moment matrix
Taps into the R package PerformanceAnalytics through rpy2
:param invariants: sample data of market invariants
:type invariants: pd.Dataframe
:param frequency: time horizon of projection, default set ot 252 days
:type frequency: int
:return: sample skew dataframe
"""
importr('PerformanceAnalytics')
if not isinstance(invariants, pd.DataFrame):
warnings.warn("invariants not a pd.Dataframe", RuntimeWarning)
invariants = pd.DataFrame(invariants)
p = invariants.shape[1]
coskew_function = robjects.r('M4.MM')
r_inv_vec = robjects.FloatVector(np.concatenate(invariants.values))
r_invariants = robjects.r.matrix(r_inv_vec,nrow=p,ncol=p)
r_M4 = coskew_function(r_invariants)
return np.matrix(r_M4)
示例3: test_pickle
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def test_pickle():
tmp_file = tempfile.NamedTemporaryFile()
robj = robjects.baseenv["pi"]
pickle.dump(robj, tmp_file)
tmp_file.flush()
tmp_file.seek(0)
robj_again = pickle.load(tmp_file)
tmp_file.close()
assert isinstance(robj, robjects.FloatVector)
# Check that underlying R objects are identical.
assert robjects.baseenv["identical"](robj,
robj_again)[0]
# Check the instance dict is also identical
assert set(robj.__dict__.keys()) == set(robj_again.__dict__.keys())
示例4: visualize_report
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def visualize_report(tenx_sample_infos, outpath):
try:
from rpy2 import robjects as ro
from grocsvs import plotting
ro.r.pdf(outpath)
frag_lengths = [numpy.log10(sample_info["frag_length_info"]["sampled"]) for sample_info in tenx_sample_infos.values()]
max_ = max(numpy.percentile(cur_frag_lengths, 99.5) for cur_frag_lengths in frag_lengths)
plotting.ecdf(frag_lengths, tenx_sample_infos.keys(), xlim=[0, max_], main="Fragment length distribution",
xlab="Fragment length (log10)", legendWhere="bottomright")
bc_counts = dict((name, sample_info["good_bc_count"]) for name, sample_info in tenx_sample_infos.items())
plotting.barPlot(bc_counts, main="Number of high-quality barcodes", ylim=[0, 1.1*max(bc_counts.values())])
# oldpar = r.par(mfrow=[min(3, len(tenx_sample_infos)), 2])
oldpar = ro.r.par(mfrow=[2,1])
for name, tenx_sample_info in tenx_sample_infos.items():
C_Rs = tenx_sample_info["coverage_of_fragments"]
C_Rs = C_Rs["coverages"] / C_Rs["lengths"].astype(float)
ro.r.hist(ro.FloatVector(C_Rs), breaks=50, xlab="Fragment coverage by short-reads (C_R)", main=name)
ro.r.hist(ro.FloatVector(tenx_sample_info["physical_depths"]), breaks=100, xlab="Coverage by long fragments (C_F)",
main=name)
ro.r.par(oldpar)
ro.r["dev.off"]()
except:
with open(outpath, "w") as f:
f.write("[the visual report requires rpy2 to be correctly installed]")
示例5: barPlot
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def barPlot(dict_, keysInOrder=None, printCounts=True, ylim=None, *args, **kwdargs):
""" Plot a bar plot
Args:
dict_: a dictionary of name -> value, where value is the height of the bar
use a collections.OrderedDict() to easily convey the order of the groups
keysInOrder: an optional ordering of the keys in dict_ (alternate option to using collections.OrderedDict)
printCounts: option to print the counts on top of each bar
additional kwdargs are passed directly to r.barplot()
"""
if not keysInOrder:
keysInOrder = dict_.keys()
heights = ro.FloatVector([dict_[key] for key in keysInOrder])
kwdargs["names.arg"] = ro.StrVector(keysInOrder)
if ylim is None:
if printCounts:
ylim = [min(heights), max(heights)*1.1]
else:
ylim = [min(heights), max(heights)]
x = r.barplot(heights, ylim=ro.FloatVector(ylim), *args, **kwdargs)
if printCounts:
heightsStrings = ["{:.2g}".format(height) for height in heights]
r.text(x, ro.FloatVector(heights), ro.StrVector(heightsStrings), pos=3)
return x
示例6: histogram
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def histogram(self, vline=None, params=None):
'''
plot histogram with vline at x=vline
'''
self.params['x'] = ro.FloatVector(self.data)
self.params['labels'] = False
if params is not None:
self.params.update(params)
graphics().hist(**self.params)
if vline is not None:
lineParams = {'v': vline, 'col': 'red'}
graphics().abline(**lineParams)
示例7: r_bats
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def r_bats(self, y, components):
components = components.copy()
if 'seasonal_periods' in components:
components['seasonal_periods'] = ro.IntVector(components['seasonal_periods'])
importr('forecast')
r_bats_func = ro.r['bats']
r_forecast = ro.r['forecast']
r_y = ro.FloatVector(list(y))
r_model = r_bats_func(r_y, **components)
summary = r_forecast(r_model)
# predictions = np.array(summary.rx('fitted')).flatten()
return summary, r_model
示例8: r_tbats
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def r_tbats(self, y, components):
components = components.copy()
if 'seasonal_periods' in components:
components['seasonal_periods'] = ro.IntVector(components['seasonal_periods'])
importr('forecast')
r_bats_func = ro.r['tbats']
r_forecast = ro.r['forecast']
r_y = ro.FloatVector(list(y))
r_model = r_bats_func(r_y, **components)
summary = r_forecast(r_model)
# predictions = np.array(summary.rx('fitted')).flatten()
return summary, r_model
示例9: fit_and_evaluate
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def fit_and_evaluate(x,z,t,y,df):
'''
Fit and evaluate non-parametric regression using Darolles, Fan, Florens and Renault (2011)
Implemented in the `np` package in R.
See [the np package documation](https://cran.r-project.org/web/packages/np/np.pdf) for details.
'''
npr=importr('np')
y_R = robjects.FloatVector(list(y.flatten()))
(x_eval, t_eval), y_true = test_points(df, 10000)
mod = npr.npregiv(y_R, t, z, x=x, zeval=t_eval, xeval=x_eval,
method="Tikhonov", p=0, optim_method ="BFGS")
return ((y_true - to_array(mod.rx2('phi.eval')))**2).mean()
示例10: nullDistPermutations
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def nullDistPermutations(tfbs_genes, matched_genes, nPerms=1000):
'''
Randomly generate a null distribution of genes from the background
set, match for pCpG and total number of genes. Calculate
enrichment of these genes for the given TFBS. Permuate nPerm times.
Return a median enrichment and p-value from the empirical
cumulative frequency distribution.
'''
null_dist = []
for i in range(0, nPerms):
null_genes = genNullGeneSet(matched_genes)
null_counts = countTFBSEnrichment(tfbs_genes, null_genes)
null_enrich = null_counts[0] / float(null_counts[1])
null_dist.append(null_enrich)
# null_dist = robjects.FloatVector([float(x) for x in null_dist])
# null_dist_r = robjects.FloatVector([float(x) for x in null_dist])
# null_ecdf = ecdf(null_dist)
out_dict = {}
out_dict['null'] = null_dist
out_dict['median'] = np.median(null_enrich)
return out_dict
示例11: test_nareal
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def test_nareal():
vec = robjects.FloatVector((1.0, 2.0, 3.0))
vec[0] = robjects.NA_Real
assert robjects.baseenv['is.na'](vec)[0] is True
示例12: test_float_repr
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def test_float_repr():
vec = robjects.vectors.FloatVector((1,2,3))
r = repr(vec).split('\n')
assert r[-1].startswith('[')
assert r[-1].endswith(']')
assert len(r[-1].split(',')) == 3
示例13: test_sequence_to_vector
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def test_sequence_to_vector():
res = robjects.sequence_to_vector((1, 2, 3))
assert isinstance(res, robjects.IntVector)
res = robjects.sequence_to_vector((1, 2, 3.0))
assert isinstance(res, robjects.FloatVector)
res = robjects.sequence_to_vector(('ab', 'cd', 'ef'))
assert isinstance(res, robjects.StrVector)
with pytest.raises(ValueError):
robjects.sequence_to_vector(list())
示例14: test_sample_probabilities
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def test_sample_probabilities():
vec = robjects.IntVector(range(100))
spl = vec.sample(10, probabilities=robjects.FloatVector([.01] * 100))
assert len(spl) == 10
示例15: setup_func
# 需要导入模块: from rpy2 import robjects [as 别名]
# 或者: from rpy2.robjects import FloatVector [as 别名]
def setup_func(kind):
#-- setup_sum-begin
n = 20000
x_list = [random.random() for i in range(n)]
module = None
if kind == "array.array":
import array as module
res = module.array('f', x_list)
elif kind == "numpy.array":
import numpy as module
res = module.array(x_list, 'f')
elif kind == "FloatVector":
import rpy2.robjects as module
res = module.FloatVector(x_list)
elif kind == "FloatSexpVector":
import rpy2.rinterface as module
module.initr()
res = module.FloatSexpVector(x_list)
elif kind == "FloatSexpVector-memoryview-array":
import rpy2.rinterface as module
module.initr()
tmp = module.FloatSexpVector(x_list)
mv = tmp.memoryview()
res = array.array(mv.format, mv)
elif kind == "list":
res = x_list
elif kind == "R":
import rpy2.robjects as module
res = module.rinterface.FloatSexpVector(x_list)
module.globalenv['x'] = res
res = None
#-- setup_sum-end
else:
raise ValueError("Unknown kind '%s'" %kind)
return (res, module)