本文整理汇总了Python中rpn.rpn.get_rpn_batch方法的典型用法代码示例。如果您正苦于以下问题:Python rpn.get_rpn_batch方法的具体用法?Python rpn.get_rpn_batch怎么用?Python rpn.get_rpn_batch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rpn.rpn
的用法示例。
在下文中一共展示了rpn.get_rpn_batch方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: parfetch
# 需要导入模块: from rpn import rpn [as 别名]
# 或者: from rpn.rpn import get_rpn_batch [as 别名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border)
return {'data': data, 'label': label}
示例2: parfetch
# 需要导入模块: from rpn import rpn [as 别名]
# 或者: from rpn.rpn import get_rpn_batch [as 别名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
return {'data': data, 'label': label}
示例3: parfetch
# 需要导入模块: from rpn import rpn [as 别名]
# 或者: from rpn.rpn import get_rpn_batch [as 别名]
def parfetch(self, iroidb):
# get testing data for multigpu
data, label = get_rpn_batch(iroidb, self.cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border)
return {'data': data, 'label': label}
# TODO test this dataloader for quadrangle
示例4: par_assign_anchor_wrapper
# 需要导入模块: from rpn import rpn [as 别名]
# 或者: from rpn.rpn import get_rpn_batch [as 别名]
def par_assign_anchor_wrapper(cfg, iroidb, feat_sym, feat_strides, anchor_scales, anchor_ratios, allowed_border):
# get testing data for multigpu
data, rpn_label = get_rpn_batch(iroidb, cfg)
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
# add gt_boxes to data for e2e
data['gt_boxes'] = rpn_label['gt_boxes'][np.newaxis, :, :]
feat_shape = [y[1] for y in [x.infer_shape(**data_shape) for x in feat_sym]]
label = assign_pyramid_anchor(feat_shape, rpn_label['gt_boxes'], data['im_info'], cfg,
feat_strides, anchor_scales, anchor_ratios, allowed_border)
return {'data': data, 'label': label}
示例5: get_batch
# 需要导入模块: from rpn import rpn [as 别名]
# 或者: from rpn.rpn import get_rpn_batch [as 别名]
def get_batch(self):
# slice roidb
cur_from = self.cur
cur_to = min(cur_from + self.batch_size, self.size)
roidb = [self.roidb[self.index[i]] for i in range(cur_from, cur_to)]
# decide multi device slice
work_load_list = self.work_load_list
ctx = self.ctx
if work_load_list is None:
work_load_list = [1] * len(ctx)
assert isinstance(work_load_list, list) and len(work_load_list) == len(ctx), \
"Invalid settings for work load. "
slices = _split_input_slice(self.batch_size, work_load_list)
# get testing data for multigpu
data_list = []
label_list = []
for islice in slices:
iroidb = [roidb[i] for i in range(islice.start, islice.stop)]
data, label = get_rpn_batch(iroidb, self.cfg)
data_list.append(data)
label_list.append(label)
# pad data first and then assign anchor (read label)
data_tensor = tensor_vstack([batch['data'] for batch in data_list])
for data, data_pad in zip(data_list, data_tensor):
data['data'] = data_pad[np.newaxis, :]
new_label_list = []
for data, label in zip(data_list, label_list):
# infer label shape
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border)
new_label_list.append(label)
all_data = dict()
for key in self.data_name:
all_data[key] = tensor_vstack([batch[key] for batch in data_list])
all_label = dict()
for key in self.label_name:
pad = -1 if key == 'label' else 0
all_label[key] = tensor_vstack([batch[key] for batch in new_label_list], pad=pad)
self.data = [mx.nd.array(all_data[key]) for key in self.data_name]
self.label = [mx.nd.array(all_label[key]) for key in self.label_name]
示例6: get_batch
# 需要导入模块: from rpn import rpn [as 别名]
# 或者: from rpn.rpn import get_rpn_batch [as 别名]
def get_batch(self):
# slice roidb
cur_from = self.cur
cur_to = min(cur_from + self.batch_size, self.size)
roidb = [self.roidb[self.index[i]] for i in range(cur_from, cur_to)]
# decide multi device slice
work_load_list = self.work_load_list
ctx = self.ctx
if work_load_list is None:
work_load_list = [1] * len(ctx)
assert isinstance(work_load_list, list) and len(work_load_list) == len(ctx), \
"Invalid settings for work load. "
slices = _split_input_slice(self.batch_size, work_load_list)
# get testing data for multigpu
data_list = []
label_list = []
for islice in slices:
iroidb = [roidb[i] for i in range(islice.start, islice.stop)]
data, label = get_rpn_batch(iroidb, self.cfg)
data_list.append(data)
label_list.append(label)
# pad data first and then assign anchor (read label)
data_tensor = tensor_vstack([batch['data'] for batch in data_list])
for data, data_pad in zip(data_list, data_tensor):
data['data'] = data_pad[np.newaxis, :]
new_label_list = []
for data, label in zip(data_list, label_list):
# infer label shape
data_shape = {k: v.shape for k, v in data.items()}
del data_shape['im_info']
_, feat_shape, _ = self.feat_sym.infer_shape(**data_shape)
feat_shape = [int(i) for i in feat_shape[0]]
# add gt_boxes to data for e2e
data['gt_boxes'] = label['gt_boxes'][np.newaxis, :, :]
# assign anchor for label
label = assign_anchor(feat_shape, label['gt_boxes'], data['im_info'], self.cfg,
self.feat_stride, self.anchor_scales,
self.anchor_ratios, self.allowed_border,
self.normalize_target, self.bbox_mean, self.bbox_std)
new_label_list.append(label)
all_data = dict()
for key in self.data_name:
all_data[key] = tensor_vstack([batch[key] for batch in data_list])
all_label = dict()
for key in self.label_name:
pad = -1 if key == 'label' else 0
all_label[key] = tensor_vstack([batch[key] for batch in new_label_list], pad=pad)
self.data = [mx.nd.array(all_data[key]) for key in self.data_name]
self.label = [mx.nd.array(all_label[key]) for key in self.label_name]