本文整理汇总了Python中roi_pooling_op.roi_pool_grad方法的典型用法代码示例。如果您正苦于以下问题:Python roi_pooling_op.roi_pool_grad方法的具体用法?Python roi_pooling_op.roi_pool_grad怎么用?Python roi_pooling_op.roi_pool_grad使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类roi_pooling_op
的用法示例。
在下文中一共展示了roi_pooling_op.roi_pool_grad方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _roi_pool_grad
# 需要导入模块: import roi_pooling_op [as 别名]
# 或者: from roi_pooling_op import roi_pool_grad [as 别名]
def _roi_pool_grad(op, grad, _):
"""The gradients for `roi_pool`.
Args:
op: The `roi_pool` `Operation` that we are differentiating, which we can use
to find the inputs and outputs of the original op.
grad: Gradient with respect to the output of the `roi_pool` op.
Returns:
Gradients with respect to the input of `zero_out`.
"""
data = op.inputs[0]
rois = op.inputs[1]
argmax = op.outputs[1]
pooled_height = op.get_attr('pooled_height')
pooled_width = op.get_attr('pooled_width')
spatial_scale = op.get_attr('spatial_scale')
# compute gradient
data_grad = roi_pooling_op.roi_pool_grad(data, rois, argmax, grad, pooled_height, pooled_width, spatial_scale)
return [data_grad, None] # List of one Tensor, since we have one input
示例2: _roi_pool_grad
# 需要导入模块: import roi_pooling_op [as 别名]
# 或者: from roi_pooling_op import roi_pool_grad [as 别名]
def _roi_pool_grad(op, grad, _):
#The gradients for `roi_pool`.
#Args:
# op: The `roi_pool` `Operation` that we are differentiating, which we can use
# to find the inputs and outputs of the original op.
# grad: Gradient with respect to the output of the `roi_pool` op.
#Returns:
# Gradients with respect to the input of `zero_out`.
data = op.inputs[0]
rois = op.inputs[1]
orientations = op.inputs[2]
argmax = op.outputs[1]
pooled_height = op.get_attr('pooled_height')
pooled_width = op.get_attr('pooled_width')
spatial_scale = op.get_attr('spatial_scale')
# compute gradient
data_grad = roi_pooling_op.roi_pool_grad(data, rois, argmax, grad, orientations, pooled_height, pooled_width, spatial_scale)
# data_grad contains the gradients with respect to the VGG output and the two 'none's indicate that there is no
# gradient with respect to the bounding box positions or rotations
return [data_grad, None, None] # List of one Tensor, since we have one input
示例3: _roi_pool_grad
# 需要导入模块: import roi_pooling_op [as 别名]
# 或者: from roi_pooling_op import roi_pool_grad [as 别名]
def _roi_pool_grad(op, grad, _):
#The gradients for `roi_pool`.
#Args:
# op: The `roi_pool` `Operation` that we are differentiating, which we can use
# to find the inputs and outputs of the original op.
# grad: Gradient with respect to the output of the `roi_pool` op.
#Returns:
# Gradients with respect to the input of `zero_out`.
data = op.inputs[0]
rois = op.inputs[1]
argmax = op.outputs[1]
pooled_height = op.get_attr('pooled_height')
pooled_width = op.get_attr('pooled_width')
spatial_scale = op.get_attr('spatial_scale')
# compute gradient
data_grad = roi_pooling_op.roi_pool_grad(data, rois, argmax, grad, pooled_height, pooled_width, spatial_scale)
return [data_grad, None] # List of one Tensor, since we have one input