当前位置: 首页>>代码示例>>Python>>正文


Python special.weighted_sample方法代码示例

本文整理汇总了Python中rllab.misc.special.weighted_sample方法的典型用法代码示例。如果您正苦于以下问题:Python special.weighted_sample方法的具体用法?Python special.weighted_sample怎么用?Python special.weighted_sample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在rllab.misc.special的用法示例。


在下文中一共展示了special.weighted_sample方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_action

# 需要导入模块: from rllab.misc import special [as 别名]
# 或者: from rllab.misc.special import weighted_sample [as 别名]
def get_action(self, observation):
        if self.state_include_action:
            if self.prev_action is None:
                prev_action = np.zeros((self.action_space.flat_dim,))
            else:
                prev_action = self.action_space.flatten(self.prev_action)
            all_input = np.concatenate([
                self.observation_space.flatten(observation),
                prev_action
            ])
        else:
            all_input = self.observation_space.flatten(observation)
            # should not be used
            prev_action = np.nan
        probs, hidden_vec = [x[0] for x in self.f_step_prob([all_input], [self.prev_hidden])]
        action = special.weighted_sample(probs, range(self.action_space.n))
        self.prev_action = action
        self.prev_hidden = hidden_vec
        agent_info = dict(prob=probs)
        if self.state_include_action:
            agent_info["prev_action"] = prev_action
        return action, agent_info 
开发者ID:bstadie,项目名称:third_person_im,代码行数:24,代码来源:categorical_gru_policy.py

示例2: get_action

# 需要导入模块: from rllab.misc import special [as 别名]
# 或者: from rllab.misc.special import weighted_sample [as 别名]
def get_action(self, observation):
        if self.state_include_action:
            if self.prev_action is None:
                prev_action = np.zeros((self.action_space.flat_dim,))
            else:
                prev_action = self.action_space.flatten(self.prev_action)
            all_input = np.concatenate([
                self.observation_space.flatten(observation),
                prev_action
            ])
        else:
            all_input = self.observation_space.flatten(observation)
            # should not be used
            prev_action = np.nan
        probs, hidden_vec = [x[0] for x in self.f_step_prob(
            [all_input], [self.prev_hidden])]
        action = special.weighted_sample(probs, range(self.action_space.n))
        self.prev_action = action
        self.prev_hidden = hidden_vec
        agent_info = dict(prob=probs)
        if self.state_include_action:
            agent_info["prev_action"] = prev_action
        return action, agent_info 
开发者ID:sisl,项目名称:gail-driver,代码行数:25,代码来源:categorical_gru_policy.py

示例3: weighted_sample

# 需要导入模块: from rllab.misc import special [as 别名]
# 或者: from rllab.misc.special import weighted_sample [as 别名]
def weighted_sample(self, weights):
        return special.weighted_sample(weights, range(self.n)) 
开发者ID:bstadie,项目名称:third_person_im,代码行数:4,代码来源:discrete.py


注:本文中的rllab.misc.special.weighted_sample方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。