当前位置: 首页>>代码示例>>Python>>正文


Python resnet.ResNet50方法代码示例

本文整理汇总了Python中resnet.ResNet50方法的典型用法代码示例。如果您正苦于以下问题:Python resnet.ResNet50方法的具体用法?Python resnet.ResNet50怎么用?Python resnet.ResNet50使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在resnet的用法示例。


在下文中一共展示了resnet.ResNet50方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: import resnet [as 别名]
# 或者: from resnet import ResNet50 [as 别名]
def run():
    t = time.time()
    print('net_cache : ', args.net_cache)

    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()
    model = ResNet50()
    model = nn.DataParallel(model.cuda())

    if os.path.exists(args.net_cache):
        print('loading checkpoint {} ..........'.format(args.net_cache))
        checkpoint = torch.load(args.net_cache)
        best_top1_acc = checkpoint['best_top1_acc']
        model.load_state_dict(checkpoint['state_dict'])
        #print("loaded checkpoint {} epoch = {}" .format(args.net_cache, checkpoint['epoch']))

    else:
        print('can not find {} '.format(args.net_cache))
        return

    num_states = len(stage_repeat) + sum(stage_repeat)
    search(model, criterion, num_states)

    total_searching_time = time.time() - t
    print('total searching time = {:.2f} hours'.format(total_searching_time/3600), flush=True) 
开发者ID:liuzechun,项目名称:MetaPruning,代码行数:27,代码来源:search.py

示例2: __init__

# 需要导入模块: import resnet [as 别名]
# 或者: from resnet import ResNet50 [as 别名]
def __init__(self, dropout_rate, feat_length = 512, archi_type='resnet18'):
        super(CIFAR10FeatureLayer, self).__init__()
        self.archi_type = archi_type
        self.feat_length = feat_length
        if self.archi_type == 'default':
            self.add_module('conv1', nn.Conv2d(3, 32, kernel_size=3, padding=1))
            self.add_module('bn1', nn.BatchNorm2d(32))
            self.add_module('relu1', nn.ReLU())
            self.add_module('pool1', nn.MaxPool2d(kernel_size=2))
            #self.add_module('drop1', nn.Dropout(dropout_rate))
            self.add_module('conv2', nn.Conv2d(32, 32, kernel_size=3, padding=1))
            self.add_module('bn2', nn.BatchNorm2d(32))
            self.add_module('relu2', nn.ReLU())
            self.add_module('pool2', nn.MaxPool2d(kernel_size=2))
            #self.add_module('drop2', nn.Dropout(dropout_rate))
            self.add_module('conv3', nn.Conv2d(32, 64, kernel_size=3, padding=1))
            self.add_module('bn3', nn.BatchNorm2d(64))
            self.add_module('relu3', nn.ReLU())
            self.add_module('pool3', nn.MaxPool2d(kernel_size=2))
            #self.add_module('drop3', nn.Dropout(dropout_rate))
        elif self.archi_type == 'resnet18':
            self.add_module('resnet18', resnet.ResNet18(feat_length))
        elif self.archi_type == 'resnet50':
            self.add_module('resnet50', resnet.ResNet50(feat_length))            
        elif self.archi_type == 'resnet152':
            self.add_module('resnet152', resnet.ResNet152(feat_length))  
        else:
            raise NotImplementedError 
开发者ID:Nicholasli1995,项目名称:VisualizingNDF,代码行数:30,代码来源:ndf.py

示例3: model_factory

# 需要导入模块: import resnet [as 别名]
# 或者: from resnet import ResNet50 [as 别名]
def model_factory(model_name, **params):
    model_dict = {
        'densenet121': DenseNet121,
        'densenet169': DenseNet169,
        'densenet201': DenseNet201,
        'densenet161': DenseNet161,
        'densenet-cifar': densenet_cifar,
        'dual-path-net-26': DPN26,
        'dual-path-net-92': DPN92,
        'googlenet': GoogLeNet,
        'lenet': LeNet,
        'mobilenet': MobileNet,
        'mobilenetv2': MobileNetV2,
        'pnasneta': PNASNetA,
        'pnasnetb': PNASNetB,
        'preact-resnet18': PreActResNet18,
        'preact-resnet34': PreActResNet34,
        'preact-resnet50': PreActResNet50,
        'preact-resnet101': PreActResNet101,
        'preact-resnet152': PreActResNet152,
        'resnet18': ResNet18,
        'resnet34': ResNet34,
        'resnet50': ResNet50,
        'resnet101': ResNet101,
        'resnet152': ResNet152,
        'resnext29_2x64d': ResNeXt29_2x64d,
        'resnext29_4x64d': ResNeXt29_4x64d,
        'resnext29_8x64d': ResNeXt29_8x64d,
        'resnext29_32x64d': ResNeXt29_32x4d,
        'senet18': SENet18,
        'shufflenetg2': ShuffleNetG2,
        'shufflenetg3': ShuffleNetG3,
        'shufflenetv2_0.5': ShuffleNetV2,
        'shufflenetv2_1.0': ShuffleNetV2,
        'shufflenetv2_1.5': ShuffleNetV2,
        'shufflenetv2_2.0': ShuffleNetV2,
        'vgg11': VGG,
        'vgg13': VGG,
        'vgg16': VGG,
        'vgg19': VGG,
    }

    if 'vgg' in model_name:
        return model_dict[model_name](model_name)
    elif 'shufflenetv2' in model_name:
        return model_dict[model_name](float(model_name[-3:]))
    elif model_name in model_dict.keys():
        return model_dict[model_name]()
    else:
        raise AttributeError('Model doesn\'t exist') 
开发者ID:suvojit-0x55aa,项目名称:mixed-precision-pytorch,代码行数:52,代码来源:model_factory_dict.py


注:本文中的resnet.ResNet50方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。