当前位置: 首页>>代码示例>>Python>>正文


Python reader.Reader方法代码示例

本文整理汇总了Python中reader.Reader方法的典型用法代码示例。如果您正苦于以下问题:Python reader.Reader方法的具体用法?Python reader.Reader怎么用?Python reader.Reader使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在reader的用法示例。


在下文中一共展示了reader.Reader方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: infer

# 需要导入模块: import reader [as 别名]
# 或者: from reader import Reader [as 别名]
def infer(img_path, model_path, image_shape, label_dict_path):
    # 获取标签字典
    char_dict = load_dict(label_dict_path)
    # 获取反转的标签字典
    reversed_char_dict = load_reverse_dict(label_dict_path)
    # 获取字典大小
    dict_size = len(char_dict)
    # 获取reader
    my_reader = Reader(char_dict=char_dict, image_shape=image_shape)
    # 初始化PaddlePaddle
    paddle.init(use_gpu=True, trainer_count=1)
    # 加载训练好的参数
    parameters = paddle.parameters.Parameters.from_tar(gzip.open(model_path))
    # 获取网络模型
    model = Model(dict_size, image_shape, is_infer=True)
    # 获取预测器
    inferer = paddle.inference.Inference(output_layer=model.log_probs, parameters=parameters)
    # 加载数据
    test_batch = [[my_reader.load_image(img_path)]]
    # 开始预测
    return start_infer(inferer, test_batch, reversed_char_dict) 
开发者ID:yeyupiaoling,项目名称:LearnPaddle,代码行数:23,代码来源:infer.py

示例2: test

# 需要导入模块: import reader [as 别名]
# 或者: from reader import Reader [as 别名]
def test():
    x_image = tf.placeholder(tf.float32, [None, 66, 200, 3])
    y = tf.placeholder(tf.float32, [None, 1])
    keep_prob = tf.placeholder(tf.float32)

    model = Nivdia_Model(x_image, y, keep_prob, FLAGS, False)

    # dataset reader
    dataset = reader.Reader(FLAGS.data_dir, FLAGS)

    # model saver used to resore model from model dir
    saver = tf.train.Saver()

    with tf.Session() as sess:
        path = tf.train.latest_checkpoint(FLAGS.model_dir)
        if not (path is None):
            saver.restore(sess, path)
        else:
            print("There is not saved model in the directory of model.")
        loss = batch_eval(model.loss, dataset.test, x_image, y, keep_prob, 500,
                          sess)
        print("Loss (MSE) in test dataset:", loss)
        mae = batch_eval(model.mae, dataset.test, x_image, y, keep_prob, 500,
                         sess)
        print("MAE in test dataset: ", mae) 
开发者ID:Kejie-Wang,项目名称:End-to-End-Learning-for-Self-Driving-Cars,代码行数:27,代码来源:test.py

示例3: model

# 需要导入模块: import reader [as 别名]
# 或者: from reader import Reader [as 别名]
def model(self):
    X_reader = Reader(self.X_train_file, name='X',
        image_size=self.image_size, batch_size=self.batch_size)
    Y_reader = Reader(self.Y_train_file, name='Y',
        image_size=self.image_size, batch_size=self.batch_size)

    x = X_reader.feed()
    y = Y_reader.feed()

    cycle_loss = self.cycle_consistency_loss(self.G, self.F, x, y)

    # X -> Y
    fake_y = self.G(x)
    G_gan_loss = self.generator_loss(self.D_Y, fake_y, use_lsgan=self.use_lsgan)
    G_loss =  G_gan_loss + cycle_loss
    D_Y_loss = self.discriminator_loss(self.D_Y, y, self.fake_y, use_lsgan=self.use_lsgan)

    # Y -> X
    fake_x = self.F(y)
    F_gan_loss = self.generator_loss(self.D_X, fake_x, use_lsgan=self.use_lsgan)
    F_loss = F_gan_loss + cycle_loss
    D_X_loss = self.discriminator_loss(self.D_X, x, self.fake_x, use_lsgan=self.use_lsgan)

    # summary
    tf.summary.histogram('D_Y/true', self.D_Y(y))
    tf.summary.histogram('D_Y/fake', self.D_Y(self.G(x)))
    tf.summary.histogram('D_X/true', self.D_X(x))
    tf.summary.histogram('D_X/fake', self.D_X(self.F(y)))

    tf.summary.scalar('loss/G', G_gan_loss)
    tf.summary.scalar('loss/D_Y', D_Y_loss)
    tf.summary.scalar('loss/F', F_gan_loss)
    tf.summary.scalar('loss/D_X', D_X_loss)
    tf.summary.scalar('loss/cycle', cycle_loss)

    tf.summary.image('X/generated', utils.batch_convert2int(self.G(x)))
    tf.summary.image('X/reconstruction', utils.batch_convert2int(self.F(self.G(x))))
    tf.summary.image('Y/generated', utils.batch_convert2int(self.F(y)))
    tf.summary.image('Y/reconstruction', utils.batch_convert2int(self.G(self.F(y))))

    return G_loss, D_Y_loss, F_loss, D_X_loss, fake_y, fake_x 
开发者ID:vanhuyz,项目名称:CycleGAN-TensorFlow,代码行数:43,代码来源:model.py

示例4: predict

# 需要导入模块: import reader [as 别名]
# 或者: from reader import Reader [as 别名]
def predict(self, predict_data_lines):
        if self.predict_queue is None:
            self.predict_queue = reader.Reader(subtoken_to_index=self.subtoken_to_index,
                                               node_to_index=self.node_to_index,
                                               target_to_index=self.target_to_index,
                                               config=self.config, is_evaluating=True)
            self.predict_placeholder = tf.placeholder(tf.string)
            reader_output = self.predict_queue.process_from_placeholder(self.predict_placeholder)
            reader_output = {key: tf.expand_dims(tensor, 0) for key, tensor in reader_output.items()}
            self.predict_top_indices_op, self.predict_top_scores_op, _, self.attention_weights_op = \
                self.build_test_graph(reader_output)
            self.predict_source_string = reader_output[reader.PATH_SOURCE_STRINGS_KEY]
            self.predict_path_string = reader_output[reader.PATH_STRINGS_KEY]
            self.predict_path_target_string = reader_output[reader.PATH_TARGET_STRINGS_KEY]
            self.predict_target_strings_op = reader_output[reader.TARGET_STRING_KEY]

            self.initialize_session_variables(self.sess)
            self.saver = tf.train.Saver()
            self.load_model(self.sess)

        results = []
        for line in predict_data_lines:
            predicted_indices, top_scores, true_target_strings, attention_weights, path_source_string, path_strings, path_target_string = self.sess.run(
                [self.predict_top_indices_op, self.predict_top_scores_op, self.predict_target_strings_op,
                 self.attention_weights_op,
                 self.predict_source_string, self.predict_path_string, self.predict_path_target_string],
                feed_dict={self.predict_placeholder: line})

            top_scores = np.squeeze(top_scores, axis=0)
            path_source_string = path_source_string.reshape((-1))
            path_strings = path_strings.reshape((-1))
            path_target_string = path_target_string.reshape((-1))
            predicted_indices = np.squeeze(predicted_indices, axis=0)
            true_target_strings = Common.binary_to_string(true_target_strings[0])

            if self.config.BEAM_WIDTH > 0:
                predicted_strings = [[self.index_to_target[sugg] for sugg in timestep]
                                     for timestep in predicted_indices]  # (target_length, top-k)  
                predicted_strings = list(map(list, zip(*predicted_strings)))  # (top-k, target_length)
                top_scores = [np.exp(np.sum(s)) for s in zip(*top_scores)]
            else:
                predicted_strings = [self.index_to_target[idx]
                                     for idx in predicted_indices]  # (batch, target_length)  

            attention_per_path = None
            if self.config.BEAM_WIDTH == 0:
                attention_per_path = self.get_attention_per_path(path_source_string, path_strings, path_target_string,
                                                                 attention_weights)

            results.append((true_target_strings, predicted_strings, top_scores, attention_per_path))
        return results 
开发者ID:tech-srl,项目名称:code2seq,代码行数:53,代码来源:model.py

示例5: main

# 需要导入模块: import reader [as 别名]
# 或者: from reader import Reader [as 别名]
def main():
    x_image = tf.placeholder(tf.float32, [None, 66, 200, 3])
    keep_prob = tf.placeholder(tf.float32)
    y = tf.placeholder(tf.float32, [None, 1])

    model = Nivdia_Model(x_image, y, keep_prob, FLAGS, False)

    # dataset reader
    dataset = reader.Reader(FLAGS.data_dir, FLAGS)

    saver = tf.train.Saver()

    with tf.Session() as sess:
        # initialize all varibales
        sess.run(tf.global_variables_initializer())
        # restore model
        print(FLAGS.model_dir)
        path = tf.train.latest_checkpoint(FLAGS.model_dir)
        if path is None:
            print("Err: the model does NOT exist")
            exit(0)
        else:
            saver.restore(sess, path)
            print("Restore model from", path)

        batch_x, batch_y = dataset.train.next_batch(FLAGS.visualization_num,
                                                    False)
        y_pred = sess.run(
            model.prediction, feed_dict={
                x_image: batch_x,
                keep_prob: 1.0
            })
        masks = sess.run(
            model.visualization_mask,
            feed_dict={
                x_image: batch_x,
                keep_prob: 1.0
            })

    if not os.path.exists(FLAGS.result_dir):
        os.makedirs(FLAGS.result_dir)
    for i in range(FLAGS.visualization_num):
        image, mask, overlay = visualize(batch_x[i], masks[i])
        cv2.imwrite(
            os.path.join(FLAGS.result_dir, "image_" + str(i) + ".jpg"), image)
        cv2.imwrite(
            os.path.join(FLAGS.result_dir, "mask_" + str(i) + ".jpg"), mask)
        cv2.imwrite(
            os.path.join(FLAGS.result_dir, "overlay_" + str(i) + ".jpg"),
            overlay) 
开发者ID:Kejie-Wang,项目名称:End-to-End-Learning-for-Self-Driving-Cars,代码行数:52,代码来源:visualization.py

示例6: model

# 需要导入模块: import reader [as 别名]
# 或者: from reader import Reader [as 别名]
def model(self):
    X_reader = Reader(self.X_train_file, name='X',
        image_size1=self.image_size1, image_size2=self.image_size2, batch_size=self.batch_size)
    Y_reader = Reader(self.Y_train_file, name='Y',
        image_size1=self.image_size1, image_size2=self.image_size2, batch_size=self.batch_size)

    x = X_reader.feed()
    y = Y_reader.feed()


    cycle_loss = self.cycle_consistency_loss(self.G, self.F, x, y)
    perceptual_loss = self.perceptual_similarity_loss(self.G, self.F, x, y, self.vgg)

    # X -> Y
    fake_y = self.G(x)
    G_gan_loss = self.generator_loss(self.D_Y, fake_y, use_lsgan=self.use_lsgan)
    G_loss = G_gan_loss + cycle_loss + perceptual_loss #+ pixel_loss
    D_Y_loss = self.discriminator_loss(self.D_Y, y, self.fake_y, use_lsgan=self.use_lsgan)

    # Y -> X
    fake_x = self.F(y)
    F_gan_loss = self.generator_loss(self.D_X, fake_x, use_lsgan=self.use_lsgan)
    F_loss = F_gan_loss + cycle_loss + perceptual_loss #+ pixel_loss
    D_X_loss = self.discriminator_loss(self.D_X, x, self.fake_x, use_lsgan=self.use_lsgan)


    # summary
    tf.summary.histogram('D_Y/true', self.D_Y(y))
    tf.summary.histogram('D_Y/fake', self.D_Y(self.G(x)))
    tf.summary.histogram('D_X/true', self.D_X(x))
    tf.summary.histogram('D_X/fake', self.D_X(self.F(y)))

    tf.summary.scalar('loss/G', G_gan_loss)
    tf.summary.scalar('loss/D_Y', D_Y_loss)
    tf.summary.scalar('loss/F', F_gan_loss)
    tf.summary.scalar('loss/D_X', D_X_loss)
    tf.summary.scalar('loss/cycle', cycle_loss)
    tf.summary.scalar('loss/perceptual_loss', perceptual_loss)
    #tf.summary.scalar('loss/pixel_loss', pixel_loss)

    tf.summary.image('X/generated', utils.batch_convert2int(self.G(x)))
    tf.summary.image('X/reconstruction', utils.batch_convert2int(self.F(self.G(x))))
    tf.summary.image('Y/generated', utils.batch_convert2int(self.F(y)))
    tf.summary.image('Y/reconstruction', utils.batch_convert2int(self.G(self.F(y))))

    return G_loss, D_Y_loss, F_loss, D_X_loss, fake_y, fake_x 
开发者ID:engindeniz,项目名称:Cycle-Dehaze,代码行数:48,代码来源:model.py


注:本文中的reader.Reader方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。