本文整理汇总了Python中ray.tune.sample_from方法的典型用法代码示例。如果您正苦于以下问题:Python tune.sample_from方法的具体用法?Python tune.sample_from怎么用?Python tune.sample_from使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ray.tune
的用法示例。
在下文中一共展示了tune.sample_from方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ray_trainable
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def ray_trainable(config, reporter):
'''
Create an instance of a trainable function for ray: https://ray.readthedocs.io/en/latest/tune-usage.html#training-api
Lab needs a spec and a trial_index to be carried through config, pass them with config in ray.run() like so:
config = {
'spec': spec,
'trial_index': tune.sample_from(lambda spec: gen_trial_index()),
... # normal ray config with sample, grid search etc.
}
'''
from convlab.experiment.control import Trial
# restore data carried from ray.run() config
spec = config.pop('spec')
trial_index = config.pop('trial_index')
spec['meta']['trial'] = trial_index
spec = inject_config(spec, config)
# run SLM Lab trial
metrics = Trial(spec).run()
metrics.update(config) # carry config for analysis too
# ray report to carry data in ray trial.last_result
reporter(trial_data={trial_index: metrics})
示例2: testLongFilename
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def testLongFilename(self):
def train(config, reporter):
assert os.path.join(ray.utils.get_user_temp_dir(), "logdir",
"foo") in os.getcwd(), os.getcwd()
reporter(timesteps_total=1)
register_trainable("f1", train)
run_experiments({
"foo": {
"run": "f1",
"local_dir": os.path.join(ray.utils.get_user_temp_dir(),
"logdir"),
"config": {
"a" * 50: tune.sample_from(lambda spec: 5.0 / 7),
"b" * 50: tune.sample_from(lambda spec: "long" * 40),
},
}
})
示例3: testGridSearchAndEval
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def testGridSearchAndEval(self):
trials = self.generate_trials({
"run": "PPO",
"config": {
"qux": tune.sample_from(lambda spec: 2 + 2),
"bar": grid_search([True, False]),
"foo": grid_search([1, 2, 3]),
"baz": "asd",
},
}, "grid_eval")
trials = list(trials)
self.assertEqual(len(trials), 6)
self.assertEqual(trials[0].config, {
"bar": True,
"foo": 1,
"qux": 4,
"baz": "asd",
})
self.assertEqual(trials[0].evaluated_params, {
"bar": True,
"foo": 1,
"qux": 4,
})
self.assertEqual(trials[0].experiment_tag, "0_bar=True,foo=1,qux=4")
示例4: ops_experiment
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def ops_experiment(size, ntrials, nsteps, result_dir, nthreads, smoke_test):
config={
'size': size,
'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
'n_steps_per_epoch': nsteps,
}
experiment = RayExperiment(
name=f'Ops_factorization_{size}',
run=TrainableOps,
local_dir=result_dir,
num_samples=ntrials,
checkpoint_at_end=True,
resources_per_trial={'cpu': nthreads, 'gpu': 0},
stop={
'training_iteration': 1 if smoke_test else 99999,
'negative_loss': -1e-8
},
config=config,
)
return experiment
示例5: fft_experiment_block2x2
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def fft_experiment_block2x2(size, ntrials, nsteps, result_dir, nthreads, smoke_test):
config={
'size': size,
'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
'n_steps_per_epoch': nsteps,
}
experiment = RayExperiment(
name=f'Fft_factorization_block_{size}',
run=TrainableFftBlock2x2,
local_dir=result_dir,
num_samples=ntrials,
checkpoint_at_end=True,
resources_per_trial={'cpu': nthreads, 'gpu': 0},
stop={
'training_iteration': 1 if smoke_test else 99999,
'negative_loss': -1e-8
},
config=config,
)
return experiment
示例6: fft_experiment_blockperm
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def fft_experiment_blockperm(size, ntrials, nsteps, result_dir, nthreads, smoke_test):
config={
'size': size,
'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
'n_steps_per_epoch': nsteps,
}
experiment = RayExperiment(
name=f'Fft_factorization_block_perm_{size}',
run=TrainableFftBlockPerm,
local_dir=result_dir,
num_samples=ntrials,
checkpoint_at_end=True,
resources_per_trial={'cpu': nthreads, 'gpu': 0},
stop={
'training_iteration': 1 if smoke_test else 99999,
'negative_loss': -1e-8
},
config=config,
)
return experiment
示例7: fft_experiment_blockperm_transpose
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def fft_experiment_blockperm_transpose(size, ntrials, nsteps, result_dir, nthreads, smoke_test):
config={
'size': size,
'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
'n_steps_per_epoch': nsteps,
}
experiment = RayExperiment(
name=f'Fft_factorization_block_perm_transpose_{size}',
run=TrainableFftBlockPermTranspose,
local_dir=result_dir,
num_samples=ntrials,
checkpoint_at_end=True,
resources_per_trial={'cpu': nthreads, 'gpu': 0},
stop={
'training_iteration': 1 if smoke_test else 99999,
'negative_loss': -1e-8
},
config=config,
)
return experiment
示例8: fft_experiment_block
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def fft_experiment_block(trainable, size, ntrials, nsteps, nepochsvalid, result_dir, nthreads, smoke_test):
config={
'target_matrix': named_target_matrix('dft', size),
'lr': sample_from(lambda spec: math.exp(random.uniform(math.log(1e-4), math.log(5e-1)))),
'seed': sample_from(lambda spec: random.randint(0, 1 << 16)),
'n_steps_per_epoch': nsteps,
'n_epochs_per_validation': nepochsvalid,
'complex': True,
}
experiment = RayExperiment(
name=f'Fft_factorization_{trainable.__name__}_{size}',
run=trainable,
local_dir=result_dir,
num_samples=ntrials,
checkpoint_at_end=True,
resources_per_trial={'cpu': nthreads, 'gpu': 0},
stop={
'training_iteration': 1 if smoke_test else 99999,
'negative_loss': -1e-8
},
config=config,
)
return experiment
示例9: ray_trainable
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def ray_trainable(config, reporter):
'''
Create an instance of a trainable function for ray: https://ray.readthedocs.io/en/latest/tune-usage.html#training-api
Lab needs a spec and a trial_index to be carried through config, pass them with config in ray.run() like so:
config = {
'spec': spec,
'trial_index': tune.sample_from(lambda spec: gen_trial_index()),
... # normal ray config with sample, grid search etc.
}
'''
import os
os.environ.pop('CUDA_VISIBLE_DEVICES', None) # remove CUDA id restriction from ray
from slm_lab.experiment.control import Trial
# restore data carried from ray.run() config
spec = config.pop('spec')
spec = inject_config(spec, config)
# tick trial_index with proper offset
trial_index = config.pop('trial_index')
spec['meta']['trial'] = trial_index - 1
spec_util.tick(spec, 'trial')
# run SLM Lab trial
metrics = Trial(spec).run()
metrics.update(config) # carry config for analysis too
# ray report to carry data in ray trial.last_result
reporter(trial_data={trial_index: metrics})
示例10: build_config_space
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def build_config_space(spec):
'''
Build ray config space from flattened spec.search
Specify a config space in spec using `"{key}__{space_type}": {v}`.
Where `{space_type}` is `grid_search` of `ray.tune`, or any function name of `np.random`:
- `grid_search`: str/int/float. v = list of choices
- `choice`: str/int/float. v = list of choices
- `randint`: int. v = [low, high)
- `uniform`: float. v = [low, high)
- `normal`: float. v = [mean, stdev)
For example:
- `"explore_anneal_epi__randint": [10, 60],` will sample integers uniformly from 10 to 60 for `explore_anneal_epi`,
- `"lr__uniform": [0.001, 0.1]`, and it will sample `lr` using `np.random.uniform(0.001, 0.1)`
If any key uses `grid_search`, it will be combined exhaustively in combination with other random sampling.
'''
space_types = ('grid_search', 'choice', 'randint', 'uniform', 'normal')
config_space = {}
for k, v in util.flatten_dict(spec['search']).items():
key, space_type = k.split('__')
assert space_type in space_types, f'Please specify your search variable as {key}__<space_type> in one of {space_types}'
if space_type == 'grid_search':
config_space[key] = tune.grid_search(v)
elif space_type == 'choice':
config_space[key] = tune.sample_from(lambda spec, v=v: random.choice(v))
else:
np_fn = getattr(np.random, space_type)
config_space[key] = tune.sample_from(lambda spec, v=v: np_fn(*v))
return config_space
示例11: run_ray_search
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def run_ray_search(spec):
'''
Method to run ray search from experiment. Uses RandomSearch now.
TODO support for other ray search algorithms: https://ray.readthedocs.io/en/latest/tune-searchalg.html
'''
logger.info(f'Running ray search for spec {spec["name"]}')
# generate trial index to pass into Lab Trial
global trial_index # make gen_trial_index passable into ray.run
trial_index = -1
def gen_trial_index():
global trial_index
trial_index += 1
return trial_index
ray.init()
ray_trials = tune.run(
ray_trainable,
name=spec['name'],
config={
"spec": spec,
"trial_index": tune.sample_from(lambda spec: gen_trial_index()),
**build_config_space(spec)
},
resources_per_trial=infer_trial_resources(spec),
num_samples=spec['meta']['max_trial'],
queue_trials=True,
)
trial_data_dict = {} # data for Lab Experiment to analyze
for ray_trial in ray_trials:
ray_trial_data = ray_trial.last_result['trial_data']
trial_data_dict.update(ray_trial_data)
ray.shutdown()
return trial_data_dict
示例12: _best_guess_spec
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def _best_guess_spec(envs=None):
spec = {
"config": {
"env_name:embed_path": tune.grid_search(_env_victim(envs)),
"embed_index": tune.sample_from(
lambda spec: VICTIM_INDEX[spec.config["env_name:embed_path"][0]]
),
"seed": tune.grid_search(list(range(3))),
},
}
return spec
示例13: _finetune_spec
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def _finetune_spec(envs=None):
spec = {
"config": {
"env_name:embed_path": tune.grid_search(_env_victim(envs)),
"seed": tune.grid_search(list(range(3))),
"load_policy": {
"path": tune.sample_from(lambda spec: spec.config["env_name:embed_path"][1]),
},
"embed_index": tune.sample_from(
lambda spec: VICTIM_INDEX[spec.config["env_name:embed_path"][0]]
),
},
}
return spec
示例14: testConditionResolution
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def testConditionResolution(self):
trials = self.generate_trials({
"run": "PPO",
"config": {
"x": 1,
"y": tune.sample_from(lambda spec: spec.config.x + 1),
"z": tune.sample_from(lambda spec: spec.config.y + 1),
},
}, "condition_resolution")
trials = list(trials)
self.assertEqual(len(trials), 1)
self.assertEqual(trials[0].config, {"x": 1, "y": 2, "z": 3})
self.assertEqual(trials[0].evaluated_params, {"y": 2, "z": 3})
self.assertEqual(trials[0].experiment_tag, "0_y=2,z=3")
示例15: testDependentLambda
# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import sample_from [as 别名]
def testDependentLambda(self):
trials = self.generate_trials({
"run": "PPO",
"config": {
"x": grid_search([1, 2]),
"y": tune.sample_from(lambda spec: spec.config.x * 100),
},
}, "dependent_lambda")
trials = list(trials)
self.assertEqual(len(trials), 2)
self.assertEqual(trials[0].config, {"x": 1, "y": 100})
self.assertEqual(trials[1].config, {"x": 2, "y": 200})