本文整理汇总了Python中ray.tune方法的典型用法代码示例。如果您正苦于以下问题:Python ray.tune方法的具体用法?Python ray.tune怎么用?Python ray.tune使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ray
的用法示例。
在下文中一共展示了ray.tune方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ray_trainable
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def ray_trainable(config, reporter):
'''
Create an instance of a trainable function for ray: https://ray.readthedocs.io/en/latest/tune-usage.html#training-api
Lab needs a spec and a trial_index to be carried through config, pass them with config in ray.run() like so:
config = {
'spec': spec,
'trial_index': tune.sample_from(lambda spec: gen_trial_index()),
... # normal ray config with sample, grid search etc.
}
'''
from convlab.experiment.control import Trial
# restore data carried from ray.run() config
spec = config.pop('spec')
trial_index = config.pop('trial_index')
spec['meta']['trial'] = trial_index
spec = inject_config(spec, config)
# run SLM Lab trial
metrics = Trial(spec).run()
metrics.update(config) # carry config for analysis too
# ray report to carry data in ray trial.last_result
reporter(trial_data={trial_index: metrics})
示例2: testTrainableCallable
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testTrainableCallable(self):
def dummy_fn(config, reporter, steps):
reporter(timesteps_total=steps, done=True)
from functools import partial
steps = 500
register_trainable("test", partial(dummy_fn, steps=steps))
[trial] = run_experiments({
"foo": {
"run": "test",
}
})
self.assertEqual(trial.status, Trial.TERMINATED)
self.assertEqual(trial.last_result[TIMESTEPS_TOTAL], steps)
[trial] = tune.run(partial(dummy_fn, steps=steps)).trials
self.assertEqual(trial.status, Trial.TERMINATED)
self.assertEqual(trial.last_result[TIMESTEPS_TOTAL], steps)
示例3: testLongFilename
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testLongFilename(self):
def train(config, reporter):
assert os.path.join(ray.utils.get_user_temp_dir(), "logdir",
"foo") in os.getcwd(), os.getcwd()
reporter(timesteps_total=1)
register_trainable("f1", train)
run_experiments({
"foo": {
"run": "f1",
"local_dir": os.path.join(ray.utils.get_user_temp_dir(),
"logdir"),
"config": {
"a" * 50: tune.sample_from(lambda spec: 5.0 / 7),
"b" * 50: tune.sample_from(lambda spec: "long" * 40),
},
}
})
示例4: testNestedStoppingReturn
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testNestedStoppingReturn(self):
def train(config, reporter):
for i in range(10):
reporter(test={"test1": {"test2": i}})
with self.assertRaises(TuneError):
[trial] = tune.run(
train, stop={
"test": {
"test1": {
"test2": 6
}
}
}).trials
[trial] = tune.run(train, stop={"test/test1/test2": 6}).trials
self.assertEqual(trial.last_result["training_iteration"], 7)
示例5: testStopper
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testStopper(self):
def train(config, reporter):
for i in range(10):
reporter(test=i)
class CustomStopper(Stopper):
def __init__(self):
self._count = 0
def __call__(self, trial_id, result):
print("called")
self._count += 1
return result["test"] > 6
def stop_all(self):
return self._count > 5
trials = tune.run(train, num_samples=5, stop=CustomStopper()).trials
self.assertTrue(all(t.status == Trial.TERMINATED for t in trials))
self.assertTrue(
any(
t.last_result.get("training_iteration") is None
for t in trials))
示例6: testBadStoppingFunction
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testBadStoppingFunction(self):
def train(config, reporter):
for i in range(10):
reporter(test=i)
class CustomStopper:
def stop(self, result):
return result["test"] > 6
def stop(result):
return result["test"] > 6
with self.assertRaises(TuneError):
tune.run(train, stop=CustomStopper().stop)
with self.assertRaises(TuneError):
tune.run(train, stop=stop)
示例7: testLotsOfStops
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testLotsOfStops(self):
class TestTrainable(Trainable):
def step(self):
result = {"name": self.trial_name, "trial_id": self.trial_id}
return result
def cleanup(self):
time.sleep(2)
open(os.path.join(self.logdir, "marker"), "a").close()
return 1
analysis = tune.run(
TestTrainable, num_samples=10, stop={TRAINING_ITERATION: 1})
ray.shutdown()
for trial in analysis.trials:
path = os.path.join(trial.logdir, "marker")
assert os.path.exists(path)
示例8: test_time
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def test_time(start_ray, tmpdir):
experiment_name = "test_time"
experiment_path = os.path.join(str(tmpdir), experiment_name)
num_samples = 2
tune.run_experiments({
experiment_name: {
"run": "__fake",
"stop": {
"training_iteration": 1
},
"num_samples": num_samples,
"local_dir": str(tmpdir)
}
})
times = []
for i in range(5):
start = time.time()
subprocess.check_call(["tune", "ls", experiment_path])
times += [time.time() - start]
assert sum(times) / len(times) < 3.0, "CLI is taking too long!"
示例9: test_ls_with_cfg
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def test_ls_with_cfg(start_ray, tmpdir):
experiment_name = "test_ls_with_cfg"
experiment_path = os.path.join(str(tmpdir), experiment_name)
tune.run(
"__fake",
name=experiment_name,
stop={"training_iteration": 1},
config={"test_variable": tune.grid_search(list(range(5)))},
local_dir=str(tmpdir))
columns = [CONFIG_PREFIX + "test_variable", "trial_id"]
limit = 4
with Capturing() as output:
commands.list_trials(experiment_path, info_keys=columns, limit=limit)
lines = output.captured
assert all(col in lines[1] for col in columns)
assert lines[1].count("|") == len(columns) + 1
assert len(lines) == 3 + limit + 1
示例10: testCloudFunctions
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testCloudFunctions(self):
tmpdir = tempfile.mkdtemp()
tmpdir2 = tempfile.mkdtemp()
os.mkdir(os.path.join(tmpdir2, "foo"))
def sync_func(local, remote):
for filename in glob.glob(os.path.join(local, "*.json")):
shutil.copy(filename, remote)
[trial] = tune.run(
"__fake",
name="foo",
max_failures=0,
local_dir=tmpdir,
stop={
"training_iteration": 1
},
upload_dir=tmpdir2,
sync_to_cloud=sync_func).trials
test_file_path = glob.glob(os.path.join(tmpdir2, "foo", "*.json"))
self.assertTrue(test_file_path)
shutil.rmtree(tmpdir)
shutil.rmtree(tmpdir2)
示例11: testNoSync
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def testNoSync(self):
"""Sync should not run on a single node."""
def sync_func(source, target):
pass
with patch.object(CommandBasedClient, "_execute") as mock_sync:
[trial] = tune.run(
"__fake",
name="foo",
max_failures=0,
**{
"stop": {
"training_iteration": 1
},
"sync_to_driver": sync_func
}).trials
self.assertEqual(mock_sync.call_count, 0)
示例12: parse_args
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-rd", "--ray-directory", default="/data/douillard/ray_results")
parser.add_argument("-o", "--output-options")
parser.add_argument("-t", "--tune")
parser.add_argument("-g", "--gpus", nargs="+", default=["0"])
parser.add_argument("-per", "--gpu-percent", type=float, default=0.5)
parser.add_argument("-topn", "--topn", default=5, type=int)
parser.add_argument("-earlystop", default="ucir", type=str)
parser.add_argument("-options", "--options", default=None, nargs="+")
parser.add_argument("-threads", default=2, type=int)
parser.add_argument("-resume", default=False, action="store_true")
parser.add_argument("-metric", default="avg_inc_acc", choices=["avg_inc_acc", "last_acc"])
return parser.parse_args()
示例13: get_tune_config
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def get_tune_config(tune_options, options_files):
with open(tune_options) as f:
options = yaml.load(f, Loader=yaml.FullLoader)
if "epochs" in options and options["epochs"] == 1:
raise ValueError("Using only 1 epoch, must be a mistake.")
config = {}
for k, v in options.items():
if not k.startswith("var:"):
config[k] = v
else:
config[k.replace("var:", "")] = tune.grid_search(v)
if options_files is not None:
print("Options files: {}".format(options_files))
config["options"] = [os.path.realpath(op) for op in options_files]
return config
示例14: get_tune_experiment
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def get_tune_experiment(config, agent, episodes, root_dir, is_schedule):
scheduler = None
agent_class = get_agent(agent)
ex_conf = {}
ex_conf["name"] = agent
ex_conf["run"] = agent_class
ex_conf["local_dir"] = config["env_config"]["output_dir"]
ex_conf["stop"] = {"episodes_total": episodes}
if is_schedule:
ex_conf["stop"] = {"time_total_s": 300}
ex_conf["num_samples"] = 2
config["env_config"]["parallel_envs"] = True
# custom changes to experiment
log.info("Performing tune experiment")
config, scheduler = set_tuning_parameters(agent, config)
ex_conf["config"] = config
experiment = Experiment(**ex_conf)
return experiment, scheduler
示例15: ray_trainable
# 需要导入模块: import ray [as 别名]
# 或者: from ray import tune [as 别名]
def ray_trainable(config, reporter):
'''
Create an instance of a trainable function for ray: https://ray.readthedocs.io/en/latest/tune-usage.html#training-api
Lab needs a spec and a trial_index to be carried through config, pass them with config in ray.run() like so:
config = {
'spec': spec,
'trial_index': tune.sample_from(lambda spec: gen_trial_index()),
... # normal ray config with sample, grid search etc.
}
'''
import os
os.environ.pop('CUDA_VISIBLE_DEVICES', None) # remove CUDA id restriction from ray
from slm_lab.experiment.control import Trial
# restore data carried from ray.run() config
spec = config.pop('spec')
spec = inject_config(spec, config)
# tick trial_index with proper offset
trial_index = config.pop('trial_index')
spec['meta']['trial'] = trial_index - 1
spec_util.tick(spec, 'trial')
# run SLM Lab trial
metrics = Trial(spec).run()
metrics.update(config) # carry config for analysis too
# ray report to carry data in ray trial.last_result
reporter(trial_data={trial_index: metrics})