当前位置: 首页>>代码示例>>Python>>正文


Python tune.Trainable方法代码示例

本文整理汇总了Python中ray.tune.Trainable方法的典型用法代码示例。如果您正苦于以下问题:Python tune.Trainable方法的具体用法?Python tune.Trainable怎么用?Python tune.Trainable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ray.tune的用法示例。


在下文中一共展示了tune.Trainable方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testAutoregisterTrainable

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testAutoregisterTrainable(self):
        def train(config, reporter):
            for i in range(100):
                reporter(timesteps_total=i)

        class B(Trainable):
            def step(self):
                return {"timesteps_this_iter": 1, "done": True}

        register_trainable("f1", train)
        trials = run_experiments({
            "foo": {
                "run": train,
            },
            "bar": {
                "run": B
            }
        })
        for trial in trials:
            self.assertEqual(trial.status, Trial.TERMINATED) 
开发者ID:ray-project,项目名称:ray,代码行数:22,代码来源:test_run_experiment.py

示例2: testCheckpointAtEnd

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testCheckpointAtEnd(self):
        class train(Trainable):
            def step(self):
                return {"timesteps_this_iter": 1, "done": True}

            def save_checkpoint(self, path):
                checkpoint = os.path.join(path, "checkpoint")
                with open(checkpoint, "w") as f:
                    f.write("OK")
                return checkpoint

        trials = run_experiments({
            "foo": {
                "run": train,
                "checkpoint_at_end": True
            }
        })
        for trial in trials:
            self.assertEqual(trial.status, Trial.TERMINATED)
            self.assertTrue(trial.has_checkpoint()) 
开发者ID:ray-project,项目名称:ray,代码行数:22,代码来源:test_run_experiment.py

示例3: testExportFormats

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testExportFormats(self):
        class train(Trainable):
            def step(self):
                return {"timesteps_this_iter": 1, "done": True}

            def _export_model(self, export_formats, export_dir):
                path = os.path.join(export_dir, "exported")
                with open(path, "w") as f:
                    f.write("OK")
                return {export_formats[0]: path}

        trials = run_experiments({
            "foo": {
                "run": train,
                "export_formats": ["format"]
            }
        })
        for trial in trials:
            self.assertEqual(trial.status, Trial.TERMINATED)
            self.assertTrue(
                os.path.exists(os.path.join(trial.logdir, "exported"))) 
开发者ID:ray-project,项目名称:ray,代码行数:23,代码来源:test_run_experiment.py

示例4: testInvalidExportFormats

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testInvalidExportFormats(self):
        class train(Trainable):
            def step(self):
                return {"timesteps_this_iter": 1, "done": True}

            def _export_model(self, export_formats, export_dir):
                ExportFormat.validate(export_formats)
                return {}

        def fail_trial():
            run_experiments({
                "foo": {
                    "run": train,
                    "export_formats": ["format"]
                }
            })

        self.assertRaises(TuneError, fail_trial) 
开发者ID:ray-project,项目名称:ray,代码行数:20,代码来源:test_run_experiment.py

示例5: testCustomResources

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testCustomResources(self):
        ray.shutdown()
        ray.init(resources={"hi": 3})

        class train(Trainable):
            def step(self):
                return {"timesteps_this_iter": 1, "done": True}

        trials = run_experiments({
            "foo": {
                "run": train,
                "resources_per_trial": {
                    "cpu": 1,
                    "custom_resources": {
                        "hi": 2
                    }
                }
            }
        })
        for trial in trials:
            self.assertEqual(trial.status, Trial.TERMINATED) 
开发者ID:ray-project,项目名称:ray,代码行数:23,代码来源:test_run_experiment.py

示例6: testResetTrial

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testResetTrial(self):
        """Tests that reset works as expected."""

        class B(Trainable):
            def step(self):
                return dict(timesteps_this_iter=1, done=True)

            def reset_config(self, config):
                self.config = config
                return True

        trials = self.generate_trials({
            "run": B,
            "config": {
                "foo": 0
            },
        }, "grid_search")
        trial = trials[0]
        self.trial_executor.start_trial(trial)
        exists = self.trial_executor.reset_trial(trial, {"hi": 1},
                                                 "modified_mock")
        self.assertEqual(exists, True)
        self.assertEqual(trial.config.get("hi"), 1)
        self.assertEqual(trial.experiment_tag, "modified_mock")
        self.assertEqual(Trial.RUNNING, trial.status) 
开发者ID:ray-project,项目名称:ray,代码行数:27,代码来源:test_ray_trial_executor.py

示例7: create_resettable_class

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def create_resettable_class():
    class MyResettableClass(Trainable):
        def setup(self, config):
            self.config = config
            self.num_resets = 0
            self.iter = 0

        def step(self):
            self.iter += 1
            return {"num_resets": self.num_resets, "done": self.iter > 1}

        def save_checkpoint(self, chkpt_dir):
            return {"iter": self.iter}

        def load_checkpoint(self, item):
            self.iter = item["iter"]

        def reset_config(self, new_config):
            if "fake_reset_not_supported" in self.config:
                return False
            self.num_resets += 1
            return True

    return MyResettableClass 
开发者ID:ray-project,项目名称:ray,代码行数:26,代码来源:test_actor_reuse.py

示例8: setUp

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def setUp(self):
        class MockTrainable(Trainable):
            scores_dict = {
                0: [5, 4, 4, 4, 4, 4, 4, 4, 0],
                1: [4, 3, 3, 3, 3, 3, 3, 3, 1],
                2: [2, 1, 1, 1, 1, 1, 1, 1, 8],
                3: [9, 7, 7, 7, 7, 7, 7, 7, 6],
                4: [7, 5, 5, 5, 5, 5, 5, 5, 3]
            }

            def setup(self, config):
                self.id = config["id"]
                self.idx = 0

            def step(self):
                val = self.scores_dict[self.id][self.idx]
                self.idx += 1
                return {"score": val}

            def save_checkpoint(self, checkpoint_dir):
                pass

            def load_checkpoint(self, checkpoint_path):
                pass

        self.MockTrainable = MockTrainable
        ray.init(local_mode=False, num_cpus=1) 
开发者ID:ray-project,项目名称:ray,代码行数:29,代码来源:test_experiment_analysis_mem.py

示例9: testCheckpointing

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testCheckpointing(self):
        pbt = self.basicSetup(perturbation_interval=2)

        class train(tune.Trainable):
            def step(self):
                return {"mean_accuracy": self.training_iteration}

            def save_checkpoint(self, path):
                checkpoint = os.path.join(path, "checkpoint")
                with open(checkpoint, "w") as f:
                    f.write("OK")
                return checkpoint

        trial_hyperparams = {
            "float_factor": 2.0,
            "const_factor": 3,
            "int_factor": 10,
            "id_factor": 0
        }

        analysis = tune.run(
            train,
            num_samples=3,
            scheduler=pbt,
            checkpoint_freq=3,
            config=trial_hyperparams,
            stop={"training_iteration": 30})

        for trial in analysis.trials:
            self.assertEqual(trial.status, Trial.TERMINATED)
            self.assertTrue(trial.has_checkpoint()) 
开发者ID:ray-project,项目名称:ray,代码行数:33,代码来源:test_trial_scheduler.py

示例10: testCheckpointDict

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def testCheckpointDict(self):
        pbt = self.basicSetup(perturbation_interval=2)

        class train_dict(tune.Trainable):
            def setup(self, config):
                self.state = {"hi": 1}

            def step(self):
                return {"mean_accuracy": self.training_iteration}

            def save_checkpoint(self, path):
                return self.state

            def load_checkpoint(self, state):
                self.state = state

        trial_hyperparams = {
            "float_factor": 2.0,
            "const_factor": 3,
            "int_factor": 10,
            "id_factor": 0
        }

        analysis = tune.run(
            train_dict,
            num_samples=3,
            scheduler=pbt,
            checkpoint_freq=3,
            config=trial_hyperparams,
            stop={"training_iteration": 30})

        for trial in analysis.trials:
            self.assertEqual(trial.status, Trial.TERMINATED)
            self.assertTrue(trial.has_checkpoint()) 
开发者ID:ray-project,项目名称:ray,代码行数:36,代码来源:test_trial_scheduler.py

示例11: TuneTrainable

# 需要导入模块: from ray import tune [as 别名]
# 或者: from ray.tune import Trainable [as 别名]
def TuneTrainable(train_fn):
    """Helper function for geting a trainable to use with Tune

    The function expectes a train_fn function which takes a config as input,
    and returns four items.

    - model: the tensorflow estimator.
    - train_spec: training specification.
    - eval_spec: evaluation specification.
    - reporter: a function which returns the metrics given evalution.

    The resulting trainable reports the metrics when checkpoints are saved,
    the report frequency is controlled by the checkpoint frequency,
    and the metrics are determined by reporter.
    """
    import os
    from ray.tune import Trainable
    from tensorflow.train import CheckpointSaverListener

    class _tuneStoper(CheckpointSaverListener):
        def after_save(self, session, global_step_value):
            return True

    class TuneTrainable(Trainable):
        def _setup(self, config):
            tf.logging.set_verbosity(tf.logging.ERROR)
            self.config = config
            model, train_spec, eval_spec, reporter = train_fn(config)
            self.model = model
            self.train_spec = train_spec
            self.eval_spec = eval_spec
            self.reporter = reporter

        def _train(self):
            import warnings
            index_warning = 'Converting sparse IndexedSlices'
            warnings.filterwarnings('ignore', index_warning)
            model = self.model
            model.train(input_fn=self.train_spec.input_fn,
                        max_steps=self.train_spec.max_steps,
                        hooks=self.train_spec.hooks,
                        saving_listeners=[_tuneStoper()])
            eval_out = model.evaluate(input_fn=self.eval_spec.input_fn,
                                      steps=self.eval_spec.steps,
                                      hooks=self.eval_spec.hooks)
            metrics = self.reporter(eval_out)
            return metrics

        def _save(self, checkpoint_dir):
            latest_checkpoint = self.model.latest_checkpoint()
            chkpath = os.path.join(checkpoint_dir, 'path.txt')
            with open(chkpath, 'w') as f:
                f.write(latest_checkpoint)
            return chkpath

        def _restore(self, checkpoint_path):
            with open(checkpoint_path) as f:
                chkpath = f.readline().strip()
            self.model, _, _, _ = train_fn(self.config, chkpath)
    return TuneTrainable 
开发者ID:Teoroo-CMC,项目名称:PiNN,代码行数:62,代码来源:utils.py


注:本文中的ray.tune.Trainable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。