当前位置: 首页>>代码示例>>Python>>正文


Python ray.remote方法代码示例

本文整理汇总了Python中ray.remote方法的典型用法代码示例。如果您正苦于以下问题:Python ray.remote方法的具体用法?Python ray.remote怎么用?Python ray.remote使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ray的用法示例。


在下文中一共展示了ray.remote方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def __init__(self, logdir, config_dict=None, **kwargs):
        if ray is None:
            raise ImportError("No module named 'ray'.")
        logger = SafeLifeLogger(logdir, **kwargs)
        self.logdir = logdir
        self.actor = self.SafeLifeLoggingActor.remote(logger, config_dict)
        self._cstats = logger.cumulative_stats.copy()

        # _promises stores references to remote updates to cumulative_stats
        # that will be received in response to having sent a log item. There
        # is no point exposing this state because there is in general no way
        # to get up-to-date statistics to any thread, and therefore no benefit
        # from knowing whether you're waiting for an update.
        self._promises = []

        self._last_update = time.time() 
开发者ID:PartnershipOnAI,项目名称:safelife,代码行数:18,代码来源:safelife_logger.py

示例2: step_walkers

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def step_walkers(self) -> None:
        """
        Make the walkers evolve to their next state sampling an action from the \
        :class:`Model` and applying it to the :class:`Environment`.
        """
        model_states = self.walkers.get("model_states")
        env_states = self.walkers.get("env_states")
        walkers_states = self.walkers.get("states")
        parent_ids = (
            copy.deepcopy(self.walkers.get("id_walkers")) if self.tree is not None else None
        )

        model_states = self.model.predict(
            env_states=env_states, model_states=model_states, walkers_states=walkers_states
        )
        env_states = await self.env.step.remote(model_states=model_states, env_states=env_states)
        # env_states = ray.get(step_id)
        self.walkers.update_states(
            env_states=env_states, model_states=model_states,
        )
        self.update_tree(parent_ids) 
开发者ID:FragileTech,项目名称:fragile,代码行数:23,代码来源:swarm.py

示例3: main

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def main(self):
        while True:
            flag, data = ray.get(self.ds.pull.remote())
            packet_id, mode, datatype = flag.split('_')
            if mode == 'STOP':
                break
            if len(data) > 0:
                if mode == 'infer':
                    if datatype == 'float':
                        data = np.asarray(data)
                        results = self.model.predict(data, batch_size=self.batch_size)
                        self.ds.push.remote(results, packet_id)
                    elif datatype == 'int8':
                        data = np.asarray(data)
                        data = np.float16(data / 255)
                        results = self.model.predict(data, batch_size=self.batch_size)
                        self.ds.push.remote(results, packet_id)
                    else:
                        raise UserWarning("Invalid datatype flag {}".format(datatype))
                else:
                    raise UserWarning("Invalid mode flag {}".format(mode))
            else:
                time.sleep(self.wait_time) 
开发者ID:dkeras-project,项目名称:dkeras,代码行数:25,代码来源:worker.py

示例4: as_remote

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def as_remote(
        cls,
        num_cpus=None,
        num_gpus=None,
        memory=None,
        object_store_memory=None,
        resources=None,
    ):
        # Worker can't use more than 1 gpu, but can also be cpu only
        assert num_gpus is None or num_gpus <= 1
        return ray.remote(
            num_cpus=num_cpus,
            num_gpus=num_gpus,
            memory=memory,
            object_store_memory=object_store_memory,
            resources=resources,
        )(cls) 
开发者ID:heronsystems,项目名称:adeptRL,代码行数:19,代码来源:rollout_worker.py

示例5: main_async

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def main_async():
    import asyncio
    from ray.experimental import async_api

    ray.init(num_cpus=4)
    remote_worker = Worker.remote()
    loop = asyncio.get_event_loop()

    t_zero = time.time()

    tasks = [
        async_api.as_future(remote_worker.sleep.remote(i)) for i in range(1, 3)
    ]
    loop.run_until_complete(asyncio.gather(tasks))

    print("delta", time.time() - t_zero) 
开发者ID:heronsystems,项目名称:adeptRL,代码行数:18,代码来源:hello_ray.py

示例6: test_base_experiment_gpu

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def test_base_experiment_gpu(tmpdir, request):
    skip_if_no_gpu(request.config)

    tmpdir_path = Path(tmpdir)
    ds = MockDataset.load()

    MockExperiment(
        MockModel,
        ds,
        data_dir=tmpdir_path / "test",
        ray_kwargs={"num_gpus": 1},
        ignore_ray_initialized_error=True,
    )

    # Make sure GPUs are available
    # in a mock remote function
    # They won't necessarily be available on the master process
    @ray.remote(num_gpus=1)
    def find_gpus():
        return ray.get_gpu_ids()

    assert len(ray.get(find_gpus.remote())) > 0 
开发者ID:RTIInternational,项目名称:gobbli,代码行数:24,代码来源:test_base_experiment.py

示例7: full_grad

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def full_grad(theta):
    theta_id = ray.put(theta)
    grad_ids = [grad.remote(theta_id, xs_id, ys_id) for (xs_id, ys_id) in batch_ids]
    return sum(ray.get(grad_ids)).astype("float64") # This conversion is necessary for use with fmin_l_bfgs_b.

  # From the perspective of scipy.optimize.fmin_l_bfgs_b, full_loss is simply a
  # function which takes some parameters theta, and computes a loss. Similarly,
  # full_grad is a function which takes some parameters theta, and computes the
  # gradient of the loss. Internally, these functions use Ray to distribute the
  # computation of the loss and the gradient over the data that is represented
  # by the remote object IDs x_batches and y_batches and which is potentially
  # distributed over a cluster. However, these details are hidden from
  # scipy.optimize.fmin_l_bfgs_b, which simply uses it to run the L-BFGS
  # algorithm.

  # Load the mnist data and turn the data into remote objects. 
开发者ID:ray-project,项目名称:ray-legacy,代码行数:18,代码来源:driver.py

示例8: shuffle_pair

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def shuffle_pair(first_batch, second_batch):
  """Shuffle two batches of data.

  Args:
    first_batch (Tuple[ObjectID. ObjectID]): The first batch to be shuffled. The
      first component is the object ID of a batch of images, and the second
      component is the object ID of the corresponding batch of labels.
    second_batch (Tuple[ObjectID, ObjectID]): The second batch to be shuffled.
      The first component is the object ID of a batch of images, and the second
      component is the object ID of the corresponding batch of labels.

  Returns:
    Tuple[ObjectID, ObjectID]: The first batch of shuffled data.
    Tuple[ObjectID, ObjectID]: Two second bach of shuffled data.
  """
  images1, labels1, images2, labels2 = shuffle_arrays.remote(first_batch[0], first_batch[1], second_batch[0], second_batch[1])
  return (images1, labels1), (images2, labels2) 
开发者ID:ray-project,项目名称:ray-legacy,代码行数:19,代码来源:alexnet.py

示例9: testComputationGraph

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def testComputationGraph(self):
    ray.init(start_ray_local=True, num_workers=1)

    @ray.remote
    def f(x):
      return x
    @ray.remote
    def g(x, y):
      return x, y
    a = f.remote(1)
    b = f.remote(1)
    c = g.remote(a, b)
    c = g.remote(a, 1)
    # Make sure that we can produce a computation_graph visualization.
    ray.visualize_computation_graph(view=False)

    ray.worker.cleanup() 
开发者ID:ray-project,项目名称:ray-legacy,代码行数:19,代码来源:runtest.py

示例10: testPythonMode

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def testPythonMode(self):
    reload(test_functions)
    ray.init(start_ray_local=True, driver_mode=ray.PYTHON_MODE)

    @ray.remote
    def f():
      return np.ones([3, 4, 5])
    xref = f.remote()
    assert_equal(xref, np.ones([3, 4, 5])) # remote functions should return by value
    assert_equal(xref, ray.get(xref)) # ray.get should be the identity
    y = np.random.normal(size=[11, 12])
    assert_equal(y, ray.put(y)) # ray.put should be the identity

    # make sure objects are immutable, this example is why we need to copy
    # arguments before passing them into remote functions in python mode
    aref = test_functions.python_mode_f.remote()
    assert_equal(aref, np.array([0, 0]))
    bref = test_functions.python_mode_g.remote(aref)
    assert_equal(aref, np.array([0, 0])) # python_mode_g should not mutate aref
    assert_equal(bref, np.array([1, 0]))

    ray.worker.cleanup() 
开发者ID:ray-project,项目名称:ray-legacy,代码行数:24,代码来源:runtest.py

示例11: testAttachingToCluster

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def testAttachingToCluster(self):
    node_ip_address = "127.0.0.1"
    scheduler_port = np.random.randint(40000, 50000)
    scheduler_address = "{}:{}".format(node_ip_address, scheduler_port)
    ray.services.start_scheduler(scheduler_address, cleanup=True)
    time.sleep(0.1)
    ray.services.start_node(scheduler_address, node_ip_address, num_workers=1, cleanup=True)

    ray.init(node_ip_address=node_ip_address, scheduler_address=scheduler_address)

    @ray.remote
    def f(x):
      return x + 1
    self.assertEqual(ray.get(f.remote(0)), 1)

    ray.worker.cleanup() 
开发者ID:ray-project,项目名称:ray-legacy,代码行数:18,代码来源:runtest.py

示例12: testAttachingToClusterWithMultipleObjectStores

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def testAttachingToClusterWithMultipleObjectStores(self):
    node_ip_address = "127.0.0.1"
    scheduler_port = np.random.randint(40000, 50000)
    scheduler_address = "{}:{}".format(node_ip_address, scheduler_port)
    ray.services.start_scheduler(scheduler_address, cleanup=True)
    time.sleep(0.1)
    ray.services.start_node(scheduler_address, node_ip_address, num_workers=5, cleanup=True)
    ray.services.start_node(scheduler_address, node_ip_address, num_workers=5, cleanup=True)
    ray.services.start_node(scheduler_address, node_ip_address, num_workers=5, cleanup=True)

    ray.init(node_ip_address=node_ip_address, scheduler_address=scheduler_address)

    @ray.remote
    def f(x):
      return x + 1
    self.assertEqual(ray.get(f.remote(0)), 1)

    ray.worker.cleanup() 
开发者ID:ray-project,项目名称:ray-legacy,代码行数:20,代码来源:runtest.py

示例13: close

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def close(self):
        super(RayRunner, self).close()
        for process in self.ray_processes.values():
            process.stop.remote() 
开发者ID:johnbywater,项目名称:eventsourcing,代码行数:6,代码来源:ray.py

示例14: __push_prompts

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def __push_prompts(self):
        try:
            item = self.downstream_prompt_queue.get()  # timeout=1)
            self.downstream_prompt_queue.task_done()
            # Todo: Instead, drain the queue and consolidate prompts.
        except Empty:
            self._print_timecheck(
                "timed out getting item from downstream prompt " "queue"
            )
            if self.has_been_stopped.is_set():
                return
        else:
            # self.print_timecheck("task done on downstream prompt queue")
            if item is None or self.has_been_stopped.is_set():
                return
            elif isinstance(item, PromptToPull):
                if item.head_notification_id:
                    head_notification_id = item.head_notification_id
                else:
                    head_notification_id = self._get_max_notification_id()
                prompt = RayPrompt(
                    self.process_application.name,
                    self.process_application.pipeline_id,
                    head_notification_id,
                )
            else:
                prompt = item
            # self._print_timecheck('pushing prompt with', prompt.notification_ids)
            prompt_response_ids = []
            # self.print_timecheck("pushing prompts", prompt)
            for downstream_name, ray_process in self.downstream_processes.items():
                prompt_response_ids.append(ray_process.prompt.remote(prompt))
                if self.has_been_stopped.is_set():
                    return
                # self._print_timecheck("pushed prompt to", downstream_name)
            ray.get(prompt_response_ids)
            # self._print_timecheck("pushed prompts") 
开发者ID:johnbywater,项目名称:eventsourcing,代码行数:39,代码来源:ray.py

示例15: __call__

# 需要导入模块: import ray [as 别名]
# 或者: from ray import remote [as 别名]
def __call__(self, *args, **kwargs):
        ray_id = self.ray_process.call.remote(self.attribute_name, *args, **kwargs)
        return_value = ray.get(ray_id)
        if isinstance(return_value, ExceptionWrapper):
            raise return_value.e
        else:
            return return_value 
开发者ID:johnbywater,项目名称:eventsourcing,代码行数:9,代码来源:ray.py


注:本文中的ray.remote方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。