本文整理汇总了Python中ray.is_initialized方法的典型用法代码示例。如果您正苦于以下问题:Python ray.is_initialized方法的具体用法?Python ray.is_initialized怎么用?Python ray.is_initialized使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ray
的用法示例。
在下文中一共展示了ray.is_initialized方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ray_local_session_fixture
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def ray_local_session_fixture():
"""Initializes Ray and shuts down Ray in local mode.
Yields:
None: Yield is for purposes of pytest module style.
All statements before the yield are apart of module setup, and all
statements after the yield are apart of module teardown.
"""
if not ray.is_initialized():
ray.init(local_mode=True,
ignore_reinit_error=True,
log_to_driver=False,
include_webui=False)
yield
if ray.is_initialized():
ray.shutdown()
示例2: ray_session_fixture
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def ray_session_fixture():
"""Initializes Ray and shuts down Ray.
Yields:
None: Yield is for purposes of pytest module style.
All statements before the yield are apart of module setup, and all
statements after the yield are apart of module teardown.
"""
if not ray.is_initialized():
ray.init(memory=52428800,
object_store_memory=78643200,
ignore_reinit_error=True,
log_to_driver=False,
include_webui=False)
yield
if ray.is_initialized():
ray.shutdown()
示例3: test_make_sampler_ray_sampler
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_make_sampler_ray_sampler(self, ray_session_fixture):
del ray_session_fixture
assert ray.is_initialized()
with LocalTFRunner(snapshot_config) as runner:
env = GarageEnv(env_name='CartPole-v1')
policy = CategoricalMLPPolicy(name='policy',
env_spec=env.spec,
hidden_sizes=(8, 8))
baseline = LinearFeatureBaseline(env_spec=env.spec)
algo = VPG(env_spec=env.spec,
policy=policy,
baseline=baseline,
max_path_length=100,
discount=0.99,
optimizer_args=dict(learning_rate=0.01, ))
runner.setup(algo, env, sampler_cls=RaySampler)
assert isinstance(runner._sampler, RaySampler)
runner.train(n_epochs=1, batch_size=10)
示例4: test_init_with_env_updates
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_init_with_env_updates(ray_local_session_fixture):
del ray_local_session_fixture
assert ray.is_initialized()
max_path_length = 16
env = GarageEnv(PointEnv())
policy = FixedPolicy(env.spec,
scripted_actions=[
env.action_space.sample()
for _ in range(max_path_length)
])
tasks = SetTaskSampler(lambda: GarageEnv(PointEnv()))
n_workers = 8
workers = WorkerFactory(seed=100,
max_path_length=max_path_length,
n_workers=n_workers)
sampler = RaySampler.from_worker_factory(workers,
policy,
envs=tasks.sample(n_workers))
rollouts = sampler.obtain_samples(0, 160, policy)
assert sum(rollouts.lengths) >= 160
示例5: test_bc_point_deterministic
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_bc_point_deterministic(ray_local_session_fixture): # NOQA
del ray_local_session_fixture
assert ray.is_initialized()
deterministic.set_seed(100)
runner = LocalRunner(snapshot_config)
goal = np.array([1., 1.])
env = GarageEnv(PointEnv(goal=goal))
expert = OptimalPolicy(env.spec, goal=goal)
policy = DeterministicMLPPolicy(env.spec, hidden_sizes=[8, 8])
batch_size = 600
algo = BC(env.spec,
policy,
batch_size=batch_size,
source=expert,
max_path_length=200,
policy_lr=1e-2,
loss='mse')
runner.setup(algo, env)
run_bc(runner, algo, batch_size)
示例6: test_bc_point
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_bc_point(ray_local_session_fixture): # NOQA
del ray_local_session_fixture
assert ray.is_initialized()
deterministic.set_seed(100)
runner = LocalRunner(snapshot_config)
goal = np.array([1., 1.])
env = GarageEnv(PointEnv(goal=goal))
expert = OptimalPolicy(env.spec, goal=goal)
policy = GaussianMLPPolicy(env.spec, [4])
batch_size = 400
algo = BC(env.spec,
policy,
batch_size=batch_size,
source=expert,
max_path_length=200,
policy_lr=1e-2,
loss='log_prob')
runner.setup(algo, env)
run_bc(runner, algo, batch_size)
示例7: __init__
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def __init__(self, worker_factory, agents, envs):
# pylint: disable=super-init-not-called
if not ray.is_initialized():
ray.init(log_to_driver=False)
self._sampler_worker = ray.remote(SamplerWorker)
self._worker_factory = worker_factory
self._agents = agents
self._envs = self._worker_factory.prepare_worker_messages(envs)
self._all_workers = defaultdict(None)
self._workers_started = False
self.start_worker()
示例8: test_ray_batch_sampler
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_ray_batch_sampler(self, ray_local_session_fixture):
del ray_local_session_fixture
assert ray.is_initialized()
workers = WorkerFactory(seed=100,
max_path_length=self.algo.max_path_length)
sampler1 = RaySampler(workers, self.policy, self.env)
sampler1.start_worker()
sampler1.shutdown_worker()
示例9: test_update_envs_env_update
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_update_envs_env_update(ray_local_session_fixture):
del ray_local_session_fixture
assert ray.is_initialized()
max_path_length = 16
env = GarageEnv(PointEnv())
policy = FixedPolicy(env.spec,
scripted_actions=[
env.action_space.sample()
for _ in range(max_path_length)
])
tasks = SetTaskSampler(PointEnv)
n_workers = 8
workers = WorkerFactory(seed=100,
max_path_length=max_path_length,
n_workers=n_workers)
sampler = RaySampler.from_worker_factory(workers, policy, env)
rollouts = sampler.obtain_samples(0,
160,
np.asarray(policy.get_param_values()),
env_update=tasks.sample(n_workers))
mean_rewards = []
goals = []
for rollout in rollouts.split():
mean_rewards.append(rollout.rewards.mean())
goals.append(rollout.env_infos['task'][0]['goal'])
assert np.var(mean_rewards) > 0
assert np.var(goals) > 0
with pytest.raises(ValueError):
sampler.obtain_samples(0,
10,
np.asarray(policy.get_param_values()),
env_update=tasks.sample(n_workers + 1))
示例10: test_obtain_exact_trajectories
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_obtain_exact_trajectories(ray_local_session_fixture):
del ray_local_session_fixture
assert ray.is_initialized()
max_path_length = 15
n_workers = 8
env = GarageEnv(PointEnv())
per_worker_actions = [env.action_space.sample() for _ in range(n_workers)]
policies = [
FixedPolicy(env.spec, [action] * max_path_length)
for action in per_worker_actions
]
workers = WorkerFactory(seed=100,
max_path_length=max_path_length,
n_workers=n_workers)
sampler = RaySampler.from_worker_factory(workers, policies, envs=env)
n_traj_per_worker = 3
rollouts = sampler.obtain_exact_trajectories(n_traj_per_worker, policies)
# At least one action per trajectory.
assert sum(rollouts.lengths) >= n_workers * n_traj_per_worker
# All of the trajectories.
assert len(rollouts.lengths) == n_workers * n_traj_per_worker
worker = -1
for count, rollout in enumerate(rollouts.split()):
if count % n_traj_per_worker == 0:
worker += 1
assert (rollout.actions == per_worker_actions[worker]).all()
示例11: init
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def init():
"""Initialize plasma event handlers for asyncio support."""
assert ray.is_initialized(), "Please call ray.init before async_api.init"
global handler
if handler is None:
worker = ray.worker.global_worker
loop = asyncio.get_event_loop()
handler = PlasmaEventHandler(loop, worker)
worker.core_worker.set_plasma_added_callback(handler)
logger.debug("AsyncPlasma Connection Created!")
示例12: __init__
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def __init__(self,
queue_trials=False,
reuse_actors=False,
ray_auto_init=False,
refresh_period=RESOURCE_REFRESH_PERIOD):
super(RayTrialExecutor, self).__init__(queue_trials)
# Check for if we are launching a trial without resources in kick off
# autoscaler.
self._trial_queued = False
self._running = {}
# Since trial resume after paused should not run
# trial.train.remote(), thus no more new remote object id generated.
# We use self._paused to store paused trials here.
self._paused = {}
self._trial_cleanup = _TrialCleanup()
self._reuse_actors = reuse_actors
self._cached_actor = None
self._avail_resources = Resources(cpu=0, gpu=0)
self._committed_resources = Resources(cpu=0, gpu=0)
self._resources_initialized = False
self._refresh_period = refresh_period
self._last_resource_refresh = float("-inf")
self._last_nontrivial_wait = time.time()
if not ray.is_initialized() and ray_auto_init:
logger.info("Initializing Ray automatically."
"For cluster usage or custom Ray initialization, "
"call `ray.init(...)` before `tune.run`.")
ray.init()
if ray.is_initialized():
self._update_avail_resources()
示例13: testTuneRestore
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def testTuneRestore(self):
self.assertFalse(ray.is_initialized())
tune.run(
"__fake",
name="TestAutoInit",
stop={"training_iteration": 1},
ray_auto_init=True)
self.assertTrue(ray.is_initialized())
示例14: shutdown_only_with_initialization_check
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def shutdown_only_with_initialization_check():
yield None
# The code after the yield will run as teardown code.
ray.shutdown()
assert not ray.is_initialized()
示例15: test_initialized_local_mode
# 需要导入模块: import ray [as 别名]
# 或者: from ray import is_initialized [as 别名]
def test_initialized_local_mode(shutdown_only_with_initialization_check):
assert not ray.is_initialized()
ray.init(num_cpus=0, local_mode=True)
assert ray.is_initialized()