本文整理汇总了Python中rasterio.warp.transform方法的典型用法代码示例。如果您正苦于以下问题:Python warp.transform方法的具体用法?Python warp.transform怎么用?Python warp.transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rasterio.warp
的用法示例。
在下文中一共展示了warp.transform方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: feature_to_mercator
# 需要导入模块: from rasterio import warp [as 别名]
# 或者: from rasterio.warp import transform [as 别名]
def feature_to_mercator(feature):
"""Normalize feature and converts coords to 3857.
Args:
feature: geojson feature to convert to mercator geometry.
"""
# Ref: https://gist.github.com/dnomadb/5cbc116aacc352c7126e779c29ab7abe
src_crs = CRS.from_epsg(4326)
dst_crs = CRS.from_epsg(3857)
geometry = feature["geometry"]
if geometry["type"] == "Polygon":
xys = (zip(*part) for part in geometry["coordinates"])
xys = (list(zip(*transform(src_crs, dst_crs, *xy))) for xy in xys)
yield {"coordinates": list(xys), "type": "Polygon"}
elif geometry["type"] == "MultiPolygon":
for component in geometry["coordinates"]:
xys = (zip(*part) for part in component)
xys = (list(zip(*transform(src_crs, dst_crs, *xy))) for xy in xys)
yield {"coordinates": list(xys), "type": "Polygon"}
示例2: burn
# 需要导入模块: from rasterio import warp [as 别名]
# 或者: from rasterio.warp import transform [as 别名]
def burn(tile, features, size):
"""Burn tile with features.
Args:
tile: the mercantile tile to burn.
features: the geojson features to burn.
size: the size of burned image.
Returns:
image: rasterized file of size with features burned.
"""
# the value you want in the output raster where a shape exists
burnval = 1
shapes = ((geometry, burnval) for feature in features for geometry in feature_to_mercator(feature))
bounds = mercantile.xy_bounds(tile)
transform = from_bounds(*bounds, size, size)
return rasterize(shapes, out_shape=(size, size), transform=transform)
示例3: transform_coordinates
# 需要导入模块: from rasterio import warp [as 别名]
# 或者: from rasterio.warp import transform [as 别名]
def transform_coordinates(source_srs, target_srs, x, y):
return tuple(i[0] for i in transform(source_srs, target_srs, x, y))
示例4: get_tile_tif
# 需要导入模块: from rasterio import warp [as 别名]
# 或者: from rasterio.warp import transform [as 别名]
def get_tile_tif(tile, imagery, folder, kwargs):
"""
Read a GeoTIFF with a window corresponding to a TMS tile
The TMS tile bounds are converted to the GeoTIFF source CRS. That bounding
box is converted to a pixel window which is read from the GeoTIFF. For
remote files which are internally tiled, this will take advantage of HTTP
GET Range Requests to avoid downloading the entire file. See more info at:
http://www.cogeo.org/in-depth.html
"""
bound = bounds(*[int(t) for t in tile.split('-')])
imagery_offset = kwargs.get('imagery_offset') or [0, 0]
with rasterio.open(imagery) as src:
x_res, y_res = src.transform[0], src.transform[4]
# offset our imagery in the "destination pixel" space
offset_bound = dict()
deg_per_pix_x = (bound.west - bound.east) / 256
deg_per_pix_y = (bound.north - bound.south) / 256
offset_bound['west'] = bound.west + imagery_offset[0] * deg_per_pix_x
offset_bound['east'] = bound.east + imagery_offset[0] * deg_per_pix_x
offset_bound['north'] = bound.north + imagery_offset[1] * deg_per_pix_y
offset_bound['south'] = bound.south + imagery_offset[1] * deg_per_pix_y
# project tile boundaries from lat/lng to source CRS
x, y = transform(WGS84_CRS, src.crs, [offset_bound['west']], [offset_bound['north']])
tile_ul_proj = x[0], y[0]
x, y = transform(WGS84_CRS, src.crs, [offset_bound['east']], [offset_bound['south']])
tile_lr_proj = x[0], y[0]
# get origin point from the TIF
tif_ul_proj = (src.bounds.left, src.bounds.top)
# use the above information to calculate the pixel indices of the window
top = int((tile_ul_proj[1] - tif_ul_proj[1]) / y_res)
left = int((tile_ul_proj[0] - tif_ul_proj[0]) / x_res)
bottom = int((tile_lr_proj[1] - tif_ul_proj[1]) / y_res)
right = int((tile_lr_proj[0] - tif_ul_proj[0]) / x_res)
window = ((top, bottom), (left, right))
# read the first three bands (assumed RGB) of the TIF into an array
data = np.empty(shape=(3, 256, 256)).astype(src.profile['dtype'])
for k in (1, 2, 3):
src.read(k, window=window, out=data[k - 1], boundless=True)
# save
tile_img = op.join(folder, '{}{}'.format(tile, '.jpg'))
img = Image.fromarray(np.moveaxis(data, 0, -1), mode='RGB')
img.save(tile_img)
return tile_img