本文整理汇总了Python中rasterio.transform.from_bounds方法的典型用法代码示例。如果您正苦于以下问题:Python transform.from_bounds方法的具体用法?Python transform.from_bounds怎么用?Python transform.from_bounds使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rasterio.transform
的用法示例。
在下文中一共展示了transform.from_bounds方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: burn
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def burn(tile, features, size):
"""Burn tile with features.
Args:
tile: the mercantile tile to burn.
features: the geojson features to burn.
size: the size of burned image.
Returns:
image: rasterized file of size with features burned.
"""
# the value you want in the output raster where a shape exists
burnval = 1
shapes = ((geometry, burnval) for feature in features for geometry in feature_to_mercator(feature))
bounds = mercantile.xy_bounds(tile)
transform = from_bounds(*bounds, size, size)
return rasterize(shapes, out_shape=(size, size), transform=transform)
示例2: _requested_tile_aligned_with_internal_tile
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def _requested_tile_aligned_with_internal_tile(
src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT],
bounds: Tuple[float, float, float, float],
height: int,
width: int,
) -> bool:
"""Check if tile is aligned with internal tiles."""
if not src_dst.is_tiled:
return False
if src_dst.crs != constants.WEB_MERCATOR_CRS:
return False
col_off, row_off, w, h = windows.from_bounds(
*bounds, height=height, transform=src_dst.transform, width=width
).flatten()
if round(w) % 64 and round(h) % 64:
return False
if (src_dst.width - round(col_off)) % 64:
return False
if (src_dst.height - round(row_off)) % 64:
return False
return True
示例3: geotiff_options
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def geotiff_options(
x: int,
y: int,
z: int,
tilesize: int = 256,
dst_crs: CRS = constants.WEB_MERCATOR_CRS,
) -> Dict:
"""
GeoTIFF options.
Attributes
----------
x : int
Mercator tile X index.
y : int
Mercator tile Y index.
z : int
Mercator tile ZOOM level.
tilesize : int, optional
Output tile size. Default is 256.
dst_crs: CRS, optional
Target coordinate reference system, default is "epsg:3857".
Returns
-------
dict
"""
bounds = mercantile.xy_bounds(mercantile.Tile(x=x, y=y, z=z))
dst_transform = from_bounds(*bounds, tilesize, tilesize)
return dict(crs=dst_crs, transform=dst_transform)
示例4: get_overview_level
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def get_overview_level(
src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT],
bounds: Tuple[float, float, float, float],
height: int,
width: int,
dst_crs: CRS = constants.WEB_MERCATOR_CRS,
) -> int:
"""
Return the overview level corresponding to the tile resolution.
Freely adapted from https://github.com/OSGeo/gdal/blob/41993f127e6e1669fbd9e944744b7c9b2bd6c400/gdal/apps/gdalwarp_lib.cpp#L2293-L2362
Attributes
----------
src_dst : rasterio.io.DatasetReader
Rasterio io.DatasetReader object
bounds : list
Bounds (left, bottom, right, top) in target crs ("dst_crs").
height : int
Output height.
width : int
Output width.
dst_crs: CRS or str, optional
Target coordinate reference system (default "epsg:3857").
Returns
-------
ovr_idx: Int or None
Overview level
"""
dst_transform, _, _ = calculate_default_transform(
src_dst.crs, dst_crs, src_dst.width, src_dst.height, *src_dst.bounds
)
src_res = dst_transform.a
# Compute what the "natural" output resolution
# (in pixels) would be for this input dataset
vrt_transform = from_bounds(*bounds, width, height)
target_res = vrt_transform.a
ovr_idx = -1
if target_res > src_res:
res = [src_res * decim for decim in src_dst.overviews(1)]
for ovr_idx in range(ovr_idx, len(res) - 1):
ovrRes = src_res if ovr_idx < 0 else res[ovr_idx]
nextRes = res[ovr_idx + 1]
if (ovrRes < target_res) and (nextRes > target_res):
break
if abs(ovrRes - target_res) < 1e-1:
break
else:
ovr_idx = len(res) - 1
return ovr_idx
示例5: get_vrt_transform
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def get_vrt_transform(
src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT],
bounds: Tuple[float, float, float, float],
height: Optional[int] = None,
width: Optional[int] = None,
dst_crs: CRS = constants.WEB_MERCATOR_CRS,
) -> Tuple[Affine, int, int]:
"""
Calculate VRT transform.
Attributes
----------
src_dst : rasterio.io.DatasetReader
Rasterio io.DatasetReader object
bounds : list
Bounds (left, bottom, right, top) in target crs ("dst_crs").
height : int, optional
Desired output height of the array for the bounds.
width : int, optional
Desired output width of the array for the bounds.
dst_crs: CRS or str, optional
Target coordinate reference system (default "epsg:3857").
Returns
-------
vrt_transform: Affine
Output affine transformation matrix
vrt_width, vrt_height: int
Output dimensions
"""
dst_transform, _, _ = calculate_default_transform(
src_dst.crs, dst_crs, src_dst.width, src_dst.height, *src_dst.bounds
)
w, s, e, n = bounds
if not height or not width:
vrt_width = math.ceil((e - w) / dst_transform.a)
vrt_height = math.ceil((s - n) / dst_transform.e)
vrt_transform = from_bounds(w, s, e, n, vrt_width, vrt_height)
return vrt_transform, vrt_width, vrt_height
tile_transform = from_bounds(w, s, e, n, width, height)
w_res = (
tile_transform.a
if abs(tile_transform.a) < abs(dst_transform.a)
else dst_transform.a
)
h_res = (
tile_transform.e
if abs(tile_transform.e) < abs(dst_transform.e)
else dst_transform.e
)
vrt_width = math.ceil((e - w) / w_res)
vrt_height = math.ceil((s - n) / h_res)
vrt_transform = from_bounds(w, s, e, n, vrt_width, vrt_height)
return vrt_transform, vrt_width, vrt_height
示例6: _tile_worker
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def _tile_worker(tile):
"""
For each tile, and given an open rasterio src, plus a`global_args` dictionary
with attributes of `base_val`, `interval`, and a `writer_func`,
warp a continous single band raster to a 512 x 512 mercator tile,
then encode this tile into RGB.
Parameters
-----------
tile: list
[x, y, z] indices of tile
Returns
--------
tile, buffer
tuple with the input tile, and a bytearray with the data encoded into
the format created in the `writer_func`
"""
x, y, z = tile
bounds = [
c
for i in (
mercantile.xy(*mercantile.ul(x, y + 1, z)),
mercantile.xy(*mercantile.ul(x + 1, y, z)),
)
for c in i
]
toaffine = transform.from_bounds(*bounds + [512, 512])
out = np.empty((512, 512), dtype=src.meta["dtype"])
reproject(
rasterio.band(src, 1),
out,
dst_transform=toaffine,
dst_crs="epsg:3857",
resampling=Resampling.bilinear,
)
out = data_to_rgb(out, global_args["base_val"], global_args["interval"])
return tile, global_args["writer_func"](out, global_args["kwargs"].copy(), toaffine)
示例7: _compute_image_stats
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def _compute_image_stats(dataset: 'DatasetReader',
max_shape: Sequence[int] = None) -> Optional[Dict[str, Any]]:
"""Compute statistics for the given rasterio dataset by reading it into memory."""
from rasterio import features, warp, transform
from shapely import geometry
out_shape = (dataset.height, dataset.width)
if max_shape is not None:
out_shape = (
min(max_shape[0], out_shape[0]),
min(max_shape[1], out_shape[1])
)
data_transform = transform.from_bounds(
*dataset.bounds, height=out_shape[0], width=out_shape[1]
)
raster_data = dataset.read(1, out_shape=out_shape, masked=True)
if dataset.nodata is not None:
# nodata values might slip into output array if out_shape < dataset.shape
raster_data[raster_data == dataset.nodata] = np.ma.masked
valid_data = raster_data.compressed()
if valid_data.size == 0:
return None
if np.any(raster_data.mask):
hull_candidates = RasterDriver._hull_candidate_mask(~raster_data.mask)
hull_shapes = (geometry.shape(s) for s, _ in features.shapes(
np.ones(hull_candidates.shape, 'uint8'),
mask=hull_candidates,
transform=data_transform
))
convex_hull = geometry.MultiPolygon(hull_shapes).convex_hull
else:
# no masked entries -> convex hull == dataset bounds
w, s, e, n = dataset.bounds
convex_hull = geometry.Polygon([(w, s), (e, s), (e, n), (w, n)])
convex_hull_wgs = warp.transform_geom(
dataset.crs, 'epsg:4326', geometry.mapping(convex_hull)
)
return {
'valid_percentage': valid_data.size / raster_data.size * 100,
'range': (float(valid_data.min()), float(valid_data.max())),
'mean': float(valid_data.mean()),
'stdev': float(valid_data.std()),
'percentiles': np.percentile(valid_data, np.arange(1, 100)),
'convex_hull': convex_hull_wgs
}
示例8: process_tile
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def process_tile(tile):
"""Process a single MBTiles tile
Parameters
----------
tile : mercantile.Tile
Returns
-------
tile : mercantile.Tile
The input tile.
bytes : bytearray
Image bytes corresponding to the tile.
"""
global base_kwds, resampling, src
# Get the bounds of the tile.
ulx, uly = mercantile.xy(
*mercantile.ul(tile.x, tile.y, tile.z))
lrx, lry = mercantile.xy(
*mercantile.ul(tile.x + 1, tile.y + 1, tile.z))
kwds = base_kwds.copy()
kwds['transform'] = transform_from_bounds(ulx, lry, lrx, uly,
kwds['width'], kwds['height'])
src_nodata = kwds.pop('src_nodata', None)
dst_nodata = kwds.pop('dst_nodata', None)
warnings.simplefilter('ignore')
with MemoryFile() as memfile:
with memfile.open(**kwds) as tmp:
# determine window of source raster corresponding to the tile
# image, with small buffer at edges
try:
west, south, east, north = transform_bounds(TILES_CRS, src.crs, ulx, lry, lrx, uly)
tile_window = window_from_bounds(west, south, east, north, transform=src.transform)
adjusted_tile_window = Window(
tile_window.col_off - 1, tile_window.row_off - 1,
tile_window.width + 2, tile_window.height + 2)
tile_window = adjusted_tile_window.round_offsets().round_shape()
# if no data in window, skip processing the tile
if not src.read_masks(1, window=tile_window).any():
return tile, None
except ValueError:
log.info("Tile %r will not be skipped, even if empty. This is harmless.", tile)
reproject(rasterio.band(src, tmp.indexes),
rasterio.band(tmp, tmp.indexes),
src_nodata=src_nodata,
dst_nodata=dst_nodata,
num_threads=1,
resampling=resampling)
return tile, memfile.read()
示例9: _rasterio_read
# 需要导入模块: from rasterio import transform [as 别名]
# 或者: from rasterio.transform import from_bounds [as 别名]
def _rasterio_read(
input_file=None,
indexes=None,
dst_bounds=None,
dst_shape=None,
dst_crs=None,
resampling=None,
src_nodata=None,
dst_nodata=None,
):
def _read(
src, indexes, dst_bounds, dst_shape, dst_crs, resampling, src_nodata, dst_nodata
):
height, width = dst_shape[-2:]
if indexes is None:
dst_shape = (len(src.indexes), height, width)
indexes = list(src.indexes)
src_nodata = src.nodata if src_nodata is None else src_nodata
dst_nodata = src.nodata if dst_nodata is None else dst_nodata
dst_left, dst_bottom, dst_right, dst_top = dst_bounds
with WarpedVRT(
src,
crs=dst_crs,
src_nodata=src_nodata,
nodata=dst_nodata,
width=width,
height=height,
transform=affine_from_bounds(
dst_left, dst_bottom, dst_right, dst_top, width, height
),
resampling=Resampling[resampling]
) as vrt:
return vrt.read(
window=vrt.window(*dst_bounds),
out_shape=dst_shape,
indexes=indexes,
masked=True
)
if isinstance(input_file, str):
logger.debug("got file path %s", input_file)
try:
with rasterio.open(input_file, "r") as src:
return _read(
src, indexes, dst_bounds, dst_shape, dst_crs, resampling, src_nodata,
dst_nodata
)
except RasterioIOError as e:
try:
if path_exists(input_file):
raise e
except:
raise e
raise FileNotFoundError("%s not found" % input_file)
else:
logger.debug("assuming file object %s", input_file)
return _read(
input_file, indexes, dst_bounds, dst_shape, dst_crs, resampling,
src_nodata, dst_nodata
)