本文整理汇总了Python中rasa_nlu.model.Trainer方法的典型用法代码示例。如果您正苦于以下问题:Python model.Trainer方法的具体用法?Python model.Trainer怎么用?Python model.Trainer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rasa_nlu.model
的用法示例。
在下文中一共展示了model.Trainer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train_model
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train_model():
# trains a model and times it
t = time()
# training_data = load_data('demo_train.md')
training_data = load_data("data/company_train_lookup.json")
td_load_time = time() - t
trainer = Trainer(config.load("config.yaml"))
t = time()
trainer.train(training_data)
train_time = time() - t
clear_model_dir()
t = time()
model_directory = trainer.persist(
"./tmp/models"
) # Returns the directory the model is stored in
persist_time = time() - t
return td_load_time, train_time, persist_time
示例2: train_models
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train_models(component_builder, data):
# Retrain different multitenancy models
def train(cfg_name, project_name):
from rasa_nlu import training_data
cfg = config.load(cfg_name)
trainer = Trainer(cfg, component_builder)
training_data = training_data.load_data(data)
trainer.train(training_data)
trainer.persist("test_projects", project_name=project_name)
train("sample_configs/config_pretrained_embeddings_spacy.yml",
"test_project_spacy")
train("sample_configs/config_pretrained_embeddings_mitie.yml",
"test_project_mitie")
train("sample_configs/config_pretrained_embeddings_mitie_2.yml",
"test_project_mitie_2")
示例3: zipped_nlu_model
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def zipped_nlu_model():
spacy_config_path = "sample_configs/config_pretrained_embeddings_spacy.yml"
cfg = config.load(spacy_config_path)
trainer = Trainer(cfg)
td = training_data.load_data(DEFAULT_DATA_PATH)
trainer.train(td)
trainer.persist("test_models",
project_name="test_model_pretrained_embeddings")
model_dir_list = os.listdir(TEST_MODEL_PATH)
# directory name of latest model
model_dir = sorted(model_dir_list)[-1]
# path of that directory
model_path = os.path.join(TEST_MODEL_PATH, model_dir)
zip_path = zip_folder(model_path)
return zip_path
示例4: train_models
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train_models(component_builder, data):
# Retrain different multitenancy models
def train(cfg_name, project_name):
from rasa_nlu.train import create_persistor
from rasa_nlu import training_data
cfg = config.load(cfg_name)
trainer = Trainer(cfg, component_builder)
training_data = training_data.load_data(data)
trainer.train(training_data)
trainer.persist("test_projects", project_name=project_name)
train("sample_configs/config_spacy.yml", "test_project_spacy_sklearn")
train("sample_configs/config_mitie.yml", "test_project_mitie")
train("sample_configs/config_mitie_sklearn.yml", "test_project_mitie_sklearn")
示例5: train
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train():
training_data = load_data('../mom/data/nlu.json')
trainer = Trainer(RasaNLUConfig("../mom/nlu_model_config.json"))
trainer.train(training_data)
model_directory = trainer.persist('../models') # Returns the directory the model is stored in
return model_directory
示例6: train_babi_nlu
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train_babi_nlu():
training_data = load_data('examples/babi/data/franken_data.json')
trainer = Trainer(RasaNLUConfig("examples/babi/data/config_nlu.json"))
trainer.train(training_data)
model_directory = trainer.persist('examples/babi/models/nlu/',
fixed_model_name=model_name)
return model_directory
示例7: train_nlu
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train_nlu():
from rasa_nlu.training_data import load_data
from rasa_nlu import config
from rasa_nlu.model import Trainer
training_data = load_data('data/nlu.md')
trainer = Trainer(config.load("config.yml"))
trainer.train(training_data)
model_directory = trainer.persist('models/nlu/',
fixed_model_name="current")
return model_directory
示例8: train
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train(nlu_config: Union[Text, RasaNLUModelConfig],
data: Text,
path: Optional[Text] = None,
project: Optional[Text] = None,
fixed_model_name: Optional[Text] = None,
storage: Optional[Text] = None,
component_builder: Optional[ComponentBuilder] = None,
training_data_endpoint: Optional[EndpointConfig] = None,
**kwargs: Any
) -> Tuple[Trainer, Interpreter, Text]:
"""Loads the trainer and the data and runs the training of the model."""
if isinstance(nlu_config, str):
nlu_config = config.load(nlu_config)
# Ensure we are training a model that we can save in the end
# WARN: there is still a race condition if a model with the same name is
# trained in another subprocess
trainer = Trainer(nlu_config, component_builder)
persistor = create_persistor(storage)
if training_data_endpoint is not None:
training_data = load_data_from_endpoint(training_data_endpoint,
nlu_config.language)
else:
training_data = load_data(data, nlu_config.language)
interpreter = trainer.train(training_data, **kwargs)
if path:
persisted_path = trainer.persist(path,
persistor,
project,
fixed_model_name)
else:
persisted_path = None
return trainer, interpreter, persisted_path
示例9: test_load_and_persist_without_train
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def test_load_and_persist_without_train(language, pipeline,
component_builder, tmpdir):
_config = RasaNLUModelConfig({"pipeline": pipeline, "language": language})
trainer = Trainer(_config, component_builder)
persistor = create_persistor(_config)
persisted_path = trainer.persist(tmpdir.strpath, persistor,
project_name="my_project")
loaded = Interpreter.load(persisted_path, component_builder)
assert loaded.pipeline
assert loaded.parse("hello") is not None
assert loaded.parse("Hello today is Monday, again!") is not None
示例10: train_nlu
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def train_nlu():
from rasa_nlu.training_data import load_data
from rasa_nlu.config import RasaNLUModelConfig
from rasa_nlu.model import Trainer
from rasa_nlu import config
training_data = load_data("data/nlu.json")
trainer = Trainer(config.load("data/nlu_model_config.json"))
trainer.train(training_data)
model_directory = trainer.persist("models/", project_name="ivr", fixed_model_name="demo")
return model_directory
示例11: __init__
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def __init__(self, training_data_file = "training_data.json",
config_file = "training_config.json"):
training_data = load_data(training_data_file)
trainer = Trainer(config.load(config_file))
self.interpreter = trainer.train(training_data)
self.confidence_threshold = 0.7
# Create supported intents
context = { 'confidence_threshold': self.confidence_threshold }
self.intents = {
"greet" : intent.HelloIntent(self, context),
"get_time" : intent.GetTimeIntent(self, context),
"ask_joke" : intent.JokeIntent(self, context),
"unknown" : intent.UnKnownIntent(self, context)
}
示例12: run_cv_evaluation
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def run_cv_evaluation(data, n_folds, nlu_config):
# type: (TrainingData, int, RasaNLUModelConfig) -> CVEvaluationResult
"""Stratified cross validation on data
:param data: Training Data
:param n_folds: integer, number of cv folds
:param nlu_config: nlu config file
:return: dictionary with key, list structure, where each entry in list
corresponds to the relevant result for one fold
"""
from collections import defaultdict
import tempfile
trainer = Trainer(nlu_config)
train_results = defaultdict(list)
test_results = defaultdict(list)
entity_train_results = defaultdict(lambda: defaultdict(list))
entity_test_results = defaultdict(lambda: defaultdict(list))
tmp_dir = tempfile.mkdtemp()
for train, test in generate_folds(n_folds, data):
interpreter = trainer.train(train)
# calculate train accuracy
train_results = combine_intent_result(train_results, interpreter, train)
test_results = combine_intent_result(test_results, interpreter, test)
# calculate test accuracy
entity_train_results = combine_entity_result(entity_train_results,
interpreter, train)
entity_test_results = combine_entity_result(entity_test_results,
interpreter, test)
shutil.rmtree(tmp_dir, ignore_errors=True)
return (CVEvaluationResult(dict(train_results), dict(test_results)),
CVEvaluationResult(dict(entity_train_results),
dict(entity_test_results)))
示例13: do_train
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def do_train(cfg, # type: RasaNLUModelConfig
data, # type: Text
path=None, # type: Optional[Text]
project=None, # type: Optional[Text]
fixed_model_name=None, # type: Optional[Text]
storage=None, # type: Optional[Text]
component_builder=None, # type: Optional[ComponentBuilder]
url=None, # type: Optional[Text]
**kwargs # type: Any
):
# type: (...) -> Tuple[Trainer, Interpreter, Text]
"""Loads the trainer and the data and runs the training of the model."""
# Ensure we are training a model that we can save in the end
# WARN: there is still a race condition if a model with the same name is
# trained in another subprocess
trainer = Trainer(cfg, component_builder)
persistor = create_persistor(storage)
if url is not None:
training_data = load_data_from_url(url, cfg.language)
else:
training_data = load_data(data, cfg.language)
interpreter = trainer.train(training_data, **kwargs)
if path:
persisted_path = trainer.persist(path,
persistor,
project,
fixed_model_name)
else:
persisted_path = None
return trainer, interpreter, persisted_path
示例14: test_train_with_empty_data
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def test_train_with_empty_data(language, pipeline, component_builder, tmpdir):
_config = RasaNLUModelConfig({"pipeline": pipeline, "language": language})
trainer = Trainer(_config, component_builder)
trainer.train(TrainingData())
persistor = create_persistor(_config)
persisted_path = trainer.persist(tmpdir.strpath, persistor,
project_name="my_project")
loaded = Interpreter.load(persisted_path, component_builder)
assert loaded.pipeline
assert loaded.parse("hello") is not None
assert loaded.parse("Hello today is Monday, again!") is not None
示例15: __init__
# 需要导入模块: from rasa_nlu import model [as 别名]
# 或者: from rasa_nlu.model import Trainer [as 别名]
def __init__(self):
self.rasa_config = RasaNLUConfig(self.config_file)
self.trainer = Trainer(self.rasa_config, self.builder)