本文整理汇总了Python中rasa_nlu.config.load方法的典型用法代码示例。如果您正苦于以下问题:Python config.load方法的具体用法?Python config.load怎么用?Python config.load使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rasa_nlu.config
的用法示例。
在下文中一共展示了config.load方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train_model
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def train_model():
# trains a model and times it
t = time()
# training_data = load_data('demo_train.md')
training_data = load_data("data/company_train_lookup.json")
td_load_time = time() - t
trainer = Trainer(config.load("config.yaml"))
t = time()
trainer.train(training_data)
train_time = time() - t
clear_model_dir()
t = time()
model_directory = trainer.persist(
"./tmp/models"
) # Returns the directory the model is stored in
persist_time = time() - t
return td_load_time, train_time, persist_time
示例2: print_stats
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def print_stats(
count,
num_words_list,
num_words,
lookup_construct_time,
td_load_time,
train_time,
persist_time,
eval_time,
total_time,
):
print("{0:.2f} % done".format((count + 1) / len(num_words_list) * 100))
print("with {} words in lookup table:".format(num_words))
print(" took {} sec. to construct lookup table".format(lookup_construct_time))
print(" took {} sec. to load training data".format(td_load_time))
print(" took {} sec. to train model".format(train_time))
print(" took {} sec. to perist model".format(persist_time))
print(" took {} sec. to evaluate on test set".format(eval_time))
print(" took {} sec. total".format(total_time))
示例3: train_models
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def train_models(component_builder, data):
# Retrain different multitenancy models
def train(cfg_name, project_name):
from rasa_nlu import training_data
cfg = config.load(cfg_name)
trainer = Trainer(cfg, component_builder)
training_data = training_data.load_data(data)
trainer.train(training_data)
trainer.persist("test_projects", project_name=project_name)
train("sample_configs/config_pretrained_embeddings_spacy.yml",
"test_project_spacy")
train("sample_configs/config_pretrained_embeddings_mitie.yml",
"test_project_mitie")
train("sample_configs/config_pretrained_embeddings_mitie_2.yml",
"test_project_mitie_2")
示例4: zipped_nlu_model
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def zipped_nlu_model():
spacy_config_path = "sample_configs/config_pretrained_embeddings_spacy.yml"
cfg = config.load(spacy_config_path)
trainer = Trainer(cfg)
td = training_data.load_data(DEFAULT_DATA_PATH)
trainer.train(td)
trainer.persist("test_models",
project_name="test_model_pretrained_embeddings")
model_dir_list = os.listdir(TEST_MODEL_PATH)
# directory name of latest model
model_dir = sorted(model_dir_list)[-1]
# path of that directory
model_path = os.path.join(TEST_MODEL_PATH, model_dir)
zip_path = zip_folder(model_path)
return zip_path
示例5: train_models
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def train_models(component_builder, data):
# Retrain different multitenancy models
def train(cfg_name, project_name):
from rasa_nlu.train import create_persistor
from rasa_nlu import training_data
cfg = config.load(cfg_name)
trainer = Trainer(cfg, component_builder)
training_data = training_data.load_data(data)
trainer.train(training_data)
trainer.persist("test_projects", project_name=project_name)
train("sample_configs/config_spacy.yml", "test_project_spacy_sklearn")
train("sample_configs/config_mitie.yml", "test_project_mitie")
train("sample_configs/config_mitie_sklearn.yml", "test_project_mitie_sklearn")
示例6: test_run_cv_evaluation
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def test_run_cv_evaluation():
td = training_data.load_data('data/examples/rasa/demo-rasa.json')
nlu_config = config.load("sample_configs/config_spacy.yml")
n_folds = 2
results, entity_results = run_cv_evaluation(td, n_folds, nlu_config)
assert len(results.train["Accuracy"]) == n_folds
assert len(results.train["Precision"]) == n_folds
assert len(results.train["F1-score"]) == n_folds
assert len(results.test["Accuracy"]) == n_folds
assert len(results.test["Precision"]) == n_folds
assert len(results.test["F1-score"]) == n_folds
assert len(entity_results.train['ner_crf']["Accuracy"]) == n_folds
assert len(entity_results.train['ner_crf']["Precision"]) == n_folds
assert len(entity_results.train['ner_crf']["F1-score"]) == n_folds
assert len(entity_results.test['ner_crf']["Accuracy"]) == n_folds
assert len(entity_results.test['ner_crf']["Precision"]) == n_folds
assert len(entity_results.test['ner_crf']["F1-score"]) == n_folds
示例7: train_nlu
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def train_nlu():
from rasa_nlu.training_data import load_data
from rasa_nlu import config
from rasa_nlu.model import Trainer
training_data = load_data('data/nlu.md')
trainer = Trainer(config.load("config.yml"))
trainer.train(training_data)
model_directory = trainer.persist('models/nlu/',
fixed_model_name="current")
return model_directory
示例8: _load_default_config
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def _load_default_config(path):
if path:
return config.load(path).as_dict()
else:
return {}
示例9: test_run_cv_evaluation
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def test_run_cv_evaluation():
td = training_data.load_data('data/examples/rasa/demo-rasa.json')
nlu_config = config.load(
"sample_configs/config_pretrained_embeddings_spacy.yml")
n_folds = 2
results, entity_results = cross_validate(td, n_folds, nlu_config)
assert len(results.train["Accuracy"]) == n_folds
assert len(results.train["Precision"]) == n_folds
assert len(results.train["F1-score"]) == n_folds
assert len(results.test["Accuracy"]) == n_folds
assert len(results.test["Precision"]) == n_folds
assert len(results.test["F1-score"]) == n_folds
assert len(entity_results.train[
'CRFEntityExtractor']["Accuracy"]) == n_folds
assert len(entity_results.train[
'CRFEntityExtractor']["Precision"]) == n_folds
assert len(entity_results.train[
'CRFEntityExtractor']["F1-score"]) == n_folds
assert len(entity_results.test[
'CRFEntityExtractor']["Accuracy"]) == n_folds
assert len(entity_results.test[
'CRFEntityExtractor']["Precision"]) == n_folds
assert len(entity_results.test[
'CRFEntityExtractor']["F1-score"]) == n_folds
示例10: test_blank_config
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def test_blank_config():
file_config = {}
f = write_file_config(file_config)
final_config = config.load(f.name)
assert final_config.as_dict() == defaults
示例11: test_invalid_config_json
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def test_invalid_config_json():
file_config = """pipeline: [spacy_sklearn""" # invalid yaml
with tempfile.NamedTemporaryFile("w+",
suffix="_tmp_config_file.json") as f:
f.write(file_config)
f.flush()
with pytest.raises(config.InvalidConfigError):
config.load(f.name)
示例12: test_invalid_pipeline_template
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def test_invalid_pipeline_template():
args = {"pipeline": "my_made_up_name"}
f = write_file_config(args)
with pytest.raises(config.InvalidConfigError) as execinfo:
config.load(f.name)
assert "unknown pipeline template" in str(execinfo.value)
示例13: test_set_attr_on_component
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def test_set_attr_on_component(default_config):
cfg = config.load("sample_configs/config_pretrained_embeddings_spacy.yml")
cfg.set_component_attr(6, C=324)
assert cfg.for_component(1) == {"name": "SpacyTokenizer"}
assert cfg.for_component(6) == {"name": "SklearnIntentClassifier",
"C": 324}
示例14: test_override_defaults_supervised_embeddings_pipeline
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def test_override_defaults_supervised_embeddings_pipeline():
cfg = config.load("data/test/config_embedding_test.yml")
builder = ComponentBuilder()
component1_cfg = cfg.for_component(0)
component1 = builder.create_component(component1_cfg, cfg)
assert component1.max_ngram == 3
component2_cfg = cfg.for_component(1)
component2 = builder.create_component(component2_cfg, cfg)
assert component2.epochs == 10
示例15: default_config
# 需要导入模块: from rasa_nlu import config [as 别名]
# 或者: from rasa_nlu.config import load [as 别名]
def default_config():
return config.load(CONFIG_DEFAULTS_PATH)