本文整理汇总了Python中random.uniform方法的典型用法代码示例。如果您正苦于以下问题:Python random.uniform方法的具体用法?Python random.uniform怎么用?Python random.uniform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类random
的用法示例。
在下文中一共展示了random.uniform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __call__
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def __call__(self, video):
for attempt in range(10):
area = video.shape[-3]*video.shape[-2]
target_area = random.uniform(0.08, 1.0)*area
aspect_ratio = random.uniform(3./4, 4./3)
w = int(round(math.sqrt(target_area*aspect_ratio)))
h = int(round(math.sqrt(target_area/aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= video.shape[-2] and h <= video.shape[-3]:
x1 = random.randint(0, video.shape[-2]-w)
y1 = random.randint(0, video.shape[-3]-h)
video = video[..., y1:y1+h, x1:x1+w, :]
return resize(video, (self.size, self.size), self.interpolation)
# Fallback
scale = Scale(self.size, interpolation=self.interpolation)
crop = CenterCrop(self.size)
return crop(scale(video))
示例2: random_size_crop
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def random_size_crop(src, size, min_area=0.25, ratio=(3.0/4.0, 4.0/3.0)):
"""Randomly crop src with size. Randomize area and aspect ratio"""
h, w, _ = src.shape
area = w*h
for _ in range(10):
new_area = random.uniform(min_area, 1.0) * area
new_ratio = random.uniform(*ratio)
new_w = int(new_area*new_ratio)
new_h = int(new_area/new_ratio)
if random.uniform(0., 1.) < 0.5:
new_w, new_h = new_h, new_w
if new_w > w or new_h > h:
continue
x0 = random.randint(0, w - new_w)
y0 = random.randint(0, h - new_h)
out = fixed_crop(src, x0, y0, new_w, new_h, size)
return out, (x0, y0, new_w, new_h)
return random_crop(src, size)
示例3: augment_hsv
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
x = (np.random.uniform(-1, 1, 3) * np.array([hgain, sgain, vgain]) + 1).astype(np.float32) # random gains
img_hsv = (cv2.cvtColor(img, cv2.COLOR_BGR2HSV) * x.reshape((1, 1, 3))).clip(None, 255).astype(np.uint8)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): # original version
# # SV augmentation by 50%
# img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val
#
# S = img_hsv[:, :, 1].astype(np.float32) # saturation
# V = img_hsv[:, :, 2].astype(np.float32) # value
#
# a = random.uniform(-1, 1) * sgain + 1
# b = random.uniform(-1, 1) * vgain + 1
# S *= a
# V *= b
#
# img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255)
# img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255)
# cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
示例4: sample
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def sample(self):
"""
This is the core sampling method. Samples a state from a
demonstration, in accordance with the configuration.
"""
# chooses a sampling scheme randomly based on the mixing ratios
seed = random.uniform(0, 1)
ratio = np.cumsum(self.scheme_ratios)
ratio = ratio > seed
for i, v in enumerate(ratio):
if v:
break
sample_method = getattr(self, self.sample_method_dict[self.sampling_schemes[i]])
return sample_method()
示例5: fake_responses
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def fake_responses(request, context):
responses = [
# increasing the chance of 404
{'text': 'Not Found', 'status_code': 404},
{'text': 'Not Found', 'status_code': 404},
{'text': 'Not Found', 'status_code': 404},
{'text': 'Not Found', 'status_code': 404},
{'text': 'OK', 'status_code': 200},
{'text': 'Gateway timeout', 'status_code': 504},
{'text': 'Bad gateway', 'status_code': 502},
]
random.shuffle(responses)
response = responses.pop()
context.status_code = response['status_code']
context.reason = response['text']
# Random float x, 1.0 <= x < 4.0 for some sleep jitter
time.sleep(random.uniform(1, 4))
return response['text']
示例6: add_cleanup_pod
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def add_cleanup_pod(url):
"""populate the cleanup pod list"""
# variance allows a pod to stay alive past grace period
variance = random.uniform(0.1, 1.5)
grace = round(settings.KUBERNETES_POD_TERMINATION_GRACE_PERIOD_SECONDS * variance)
# save
pods = cache.get('cleanup_pods', {})
pods[url] = (datetime.utcnow() + timedelta(seconds=grace))
cache.set('cleanup_pods', pods)
# add grace period timestamp
pod = cache.get(url)
grace = settings.KUBERNETES_POD_TERMINATION_GRACE_PERIOD_SECONDS
pd = datetime.utcnow() + timedelta(seconds=grace)
timestamp = str(pd.strftime(MockSchedulerClient.DATETIME_FORMAT))
pod['metadata']['deletionTimestamp'] = timestamp
cache.set(url, pod)
示例7: get_params
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def get_params(img, scale, ratio):
if type(img) == np.ndarray:
img_h, img_w, img_c = img.shape
else:
img_h, img_w = img.size
img_c = len(img.getbands())
s = random.uniform(*scale)
# if you img_h != img_w you may need this.
# r_1 = max(r_1, (img_h*s)/img_w)
# r_2 = min(r_2, img_h / (img_w*s))
r = random.uniform(*ratio)
s = s * img_h * img_w
w = int(math.sqrt(s / r))
h = int(math.sqrt(s * r))
left = random.randint(0, img_w - w)
top = random.randint(0, img_h - h)
return left, top, h, w, img_c
示例8: random_resize
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def random_resize(im, min_res: int, max_scale=_DEFAULT_MAX_SCALE):
"""Scale longer side to `min_res`, but only if that scales by <= max_scale."""
W, H = im.size
D = min(W, H)
scale_min = min_res / D
# Image is too small to downscale by a factor smaller MAX_SCALE.
if scale_min > max_scale:
return None
# Get a random scale for new size.
scale = random.uniform(scale_min, max_scale)
new_size = round(W * scale), round(H * scale)
try:
# Using LANCZOS!
return im.resize(new_size, resample=PIL.Image.LANCZOS)
except OSError as e: # Happens for corrupted images
print('*** Caught im.resize error', e)
return None
示例9: __call__
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def __call__(self, img):
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.08, 1.0) * area
aspect_ratio = random.uniform(3. / 4, 4. / 3)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
assert(img.size == (w, h))
return img.resize((self.size, self.size), self.interpolation)
# Fallback
scale = Scale(self.size, interpolation=self.interpolation)
crop = CenterCrop(self.size)
return crop(scale(img))
示例10: spec_augment
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def spec_augment(spec: np.ndarray,
num_mask=2,
freq_masking=0.15,
time_masking=0.20,
value=0):
spec = spec.copy()
num_mask = random.randint(1, num_mask)
for i in range(num_mask):
all_freqs_num, all_frames_num = spec.shape
freq_percentage = random.uniform(0.0, freq_masking)
num_freqs_to_mask = int(freq_percentage * all_freqs_num)
f0 = np.random.uniform(low=0.0, high=all_freqs_num - num_freqs_to_mask)
f0 = int(f0)
spec[f0:f0 + num_freqs_to_mask, :] = value
time_percentage = random.uniform(0.0, time_masking)
num_frames_to_mask = int(time_percentage * all_frames_num)
t0 = np.random.uniform(low=0.0, high=all_frames_num - num_frames_to_mask)
t0 = int(t0)
spec[:, t0:t0 + num_frames_to_mask] = value
return spec
示例11: random
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def random(base_price, t_gen, delta):
return ModelParameters(
all_s0=base_price,
all_r0=0.5,
all_time=t_gen,
all_delta=delta,
all_sigma=uniform(0.1, 0.8),
gbm_mu=uniform(-0.3, 0.6),
jumps_lamda=uniform(0.0071, 0.6),
jumps_sigma=uniform(-0.03, 0.04),
jumps_mu=uniform(-0.2, 0.2),
cir_a=3.0,
cir_mu=0.5,
cir_rho=0.5,
ou_a=3.0,
ou_mu=0.5,
heston_a=uniform(1, 5),
heston_mu=uniform(0.156, 0.693),
heston_vol0=0.06125
)
示例12: __call__
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def __call__(self, data):
image, label = data
height, width = image.shape[:2]
xmin = width
ymin = height
xmax = 0
ymax = 0
for lb in label:
xmin = min(xmin, lb[0])
ymin = min(ymin, lb[1])
xmax = max(xmax, lb[2])
ymax = max(ymax, lb[2])
cropped_left = uniform(0, self.max_crop)
cropped_right = uniform(0, self.max_crop)
cropped_top = uniform(0, self.max_crop)
cropped_bottom = uniform(0, self.max_crop)
new_xmin = int(min(cropped_left * width, xmin))
new_ymin = int(min(cropped_top * height, ymin))
new_xmax = int(max(width - 1 - cropped_right * width, xmax))
new_ymax = int(max(height - 1 - cropped_bottom * height, ymax))
image = image[new_ymin:new_ymax, new_xmin:new_xmax, :]
label = [[lb[0] - new_xmin, lb[1] - new_ymin, lb[2] - new_xmin, lb[3] - new_ymin, lb[4]] for lb in label]
return image, label
示例13: __init__
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def __init__(self, name, goal, min_tol, max_tol, max_move=100,
max_detect=1):
super().__init__(name, goal, max_move=max_move, max_detect=max_detect)
self.tolerance = random.uniform(max_tol, min_tol)
self.stance = None
self.orientation = None
self.visible_pre = None
示例14: __init__
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def __init__(self, name, goal, noise):
super().__init__(name, goal, 2, SITTING)
self.name = name
self.goal = goal
self.noise = noise
self.state = SITTING
self.standard = random.uniform(0.4, 1.0)
self.ntype = self.state
self.next_state = STANDING
self.changed = False
self.pressure = 0
self.reaction()
示例15: create_rholder
# 需要导入模块: import random [as 别名]
# 或者: from random import uniform [as 别名]
def create_rholder(name, i, props=None):
"""
Create an agent.
"""
k_price = DEF_K_PRICE
resources = copy.deepcopy(DEF_CAP_WANTED)
num_resources = len(resources)
price_list = copy.deepcopy(DEF_EACH_CAP_PRICE)
if props is not None:
k_price = props.get('cap_price',
DEF_K_PRICE)
for k in price_list.keys():
price_list[k] = float("{0:.2f}".format(float(k_price
* random.uniform(0.5,
1.5))))
starting_cash = DEF_RHOLDER_CASH
if props is not None:
starting_cash = get_prop('rholder_starting_cash',
DEF_RHOLDER_CASH)
if props is not None:
total_resources = get_prop('rholder_starting_resource_total',
DEF_TOTAL_RESOURCES_RHOLDER_HAVE)
for k in resources.keys():
resources[k] = int((total_resources * 2)
* (random.random() / num_resources))
return Agent(name + str(i), action=rholder_action,
attrs={"cash": starting_cash,
"resources": resources,
"price": price_list})