当前位置: 首页>>代码示例>>Python>>正文


Python quaternion.as_float_array方法代码示例

本文整理汇总了Python中quaternion.as_float_array方法的典型用法代码示例。如果您正苦于以下问题:Python quaternion.as_float_array方法的具体用法?Python quaternion.as_float_array怎么用?Python quaternion.as_float_array使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在quaternion的用法示例。


在下文中一共展示了quaternion.as_float_array方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: rotmat2quat

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def rotmat2quat(rotmats):
    """
    Convert rotation matrices to quaternions. It ensures that there's no switch to the antipodal representation
    within this sequence of rotations.
    Args:
        oris: np array of shape (seq_length, n_joints*9).

    Returns: np array of shape (seq_length, n_joints*4)
    """
    seq_length = rotmats.shape[0]
    assert rotmats.shape[1] % 9 == 0
    ori = np.reshape(rotmats, [seq_length, -1, 3, 3])
    ori_q = quaternion.as_float_array(quaternion.from_rotation_matrix(ori))
    ori_qc = correct_antipodal_quaternions(ori_q)
    ori_qc = np.reshape(ori_qc, [seq_length, -1])
    return ori_qc 
开发者ID:eth-ait,项目名称:spl,代码行数:18,代码来源:preprocess_dip.py

示例2: interpolate_quaternion_linear

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def interpolate_quaternion_linear(data, ts_in, ts_out):
    """
    This function interpolate the input quaternion array into another time stemp.

    Args:
        data: Nx4 array containing N quaternions.
        ts_in: input_timestamp- N-sized array containing time stamps for each of the input quaternion.
        ts_out: output_timestamp- M-sized array containing output time stamps.
    Return:
        Mx4 array containing M quaternions.
    """

    assert np.amin(ts_in) <= np.amin(ts_out), 'Input time range must cover output time range'
    assert np.amax(ts_in) >= np.amax(ts_out), 'Input time range must cover output time range'
    pt = np.searchsorted(ts_in, ts_out)
    d_left = quaternion.from_float_array(data[pt - 1])
    d_right = quaternion.from_float_array(data[pt])
    ts_left, ts_right = ts_in[pt - 1], ts_in[pt]
    d_out = quaternion.quaternion_time_series.slerp(d_left, d_right, ts_left, ts_right, ts_out)
    return quaternion.as_float_array(d_out) 
开发者ID:Sachini,项目名称:ronin,代码行数:22,代码来源:math_util.py

示例3: recon_traj_with_preds

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def recon_traj_with_preds(dataset, preds, seq_id=0, **kwargs):
    ind = np.array([i[1] for i in dataset.index_map if i[0] == seq_id], dtype=np.int)
    ts = dataset.ts[seq_id]
    dt = np.mean(ts[ind[1:]] - ts[ind[:-1]])

    rot_local_to_grav = get_rotation_compensate_gravity(dataset.gravity[seq_id])
    ori = quaternion.from_float_array(dataset.orientations[seq_id])

    rot_grav_to_glob = (ori * quaternion.from_float_array(rot_local_to_grav).conj())[ind]

    za = np.zeros(preds.shape[0])
    preds_q = quaternion.from_float_array(np.stack([za, preds[:, 0], za, preds[:, 1]], axis=1))
    glob_v = quaternion.as_float_array(rot_grav_to_glob * preds_q * rot_grav_to_glob.conj())[:, 1:] * dt

    pos = np.zeros([glob_v.shape[0] + 2, 2])
    pos[0] = dataset.gt_pos[seq_id][0, :2]
    pos[1:-1] = np.cumsum(glob_v[:, :2], axis=0) + pos[0]
    pos[-1] = pos[-2]

    ts_ext = np.concatenate([[ts[0] - 1e-06], ts[ind], [ts[-1] + 1e-06]], axis=0)
    pos = interp1d(ts_ext, pos, axis=0)(ts)
    return pos 
开发者ID:Sachini,项目名称:ronin,代码行数:24,代码来源:baseline_ridi.py

示例4: minimal_rotation

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def minimal_rotation(R, t, iterations=2):
    """Adjust frame so that there is no rotation about z' axis

    The output of this function is a frame that rotates the z axis onto the same z' axis as the
    input frame, but with minimal rotation about that axis.  This is done by pre-composing the input
    rotation with a rotation about the z axis through an angle gamma, where

        dgamma/dt = 2*(dR/dt * z * R.conjugate()).w

    This ensures that the angular velocity has no component along the z' axis.

    Note that this condition becomes easier to impose the closer the input rotation is to a
    minimally rotating frame, which means that repeated application of this function improves its
    accuracy.  By default, this function is iterated twice, though a few more iterations may be
    called for.

    Parameters
    ==========
    R: quaternion array
        Time series describing rotation
    t: float array
        Corresponding times at which R is measured
    iterations: int [defaults to 2]
        Repeat the minimization to refine the result

    """
    from scipy.interpolate import InterpolatedUnivariateSpline as spline
    if iterations == 0:
        return R
    R = quaternion.as_float_array(R)
    Rdot = np.empty_like(R)
    for i in range(4):
        Rdot[:, i] = spline(t, R[:, i]).derivative()(t)
    R = quaternion.from_float_array(R)
    Rdot = quaternion.from_float_array(Rdot)
    halfgammadot = quaternion.as_float_array(Rdot * quaternion.z * np.conjugate(R))[:, 0]
    halfgamma = spline(t, halfgammadot).antiderivative()(t)
    Rgamma = np.exp(quaternion.z * halfgamma)
    return minimal_rotation(R * Rgamma, t, iterations=iterations-1) 
开发者ID:moble,项目名称:quaternion,代码行数:41,代码来源:quaternion_time_series.py

示例5: angular_velocity

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def angular_velocity(R, t):
    from scipy.interpolate import InterpolatedUnivariateSpline as spline
    R = quaternion.as_float_array(R)
    Rdot = np.empty_like(R)
    for i in range(4):
        Rdot[:, i] = spline(t, R[:, i]).derivative()(t)
    R = quaternion.from_float_array(R)
    Rdot = quaternion.from_float_array(Rdot)
    return quaternion.as_float_array(2*Rdot/R)[:, 1:] 
开发者ID:moble,项目名称:quaternion,代码行数:11,代码来源:quaternion_time_series.py

示例6: test_as_float_quat

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def test_as_float_quat(Qs):
    qs = Qs[Qs_nonnan]
    for quats in [qs, np.vstack((qs,)*3), np.vstack((qs,)*(3*5)).reshape((3, 5)+qs.shape),
                  np.vstack((qs,)*(3*5*6)).reshape((3, 5, 6)+qs.shape)]:
        floats = quaternion.as_float_array(quats)
        assert floats.shape == quats.shape+(4,)
        assert allclose(quaternion.as_quat_array(floats), quats)
        assert allclose(quaternion.from_float_array(floats), quats)
        # Test that we can handle a list just like an array
        assert np.array_equal(quaternion.as_quat_array(floats), quaternion.as_quat_array(floats.tolist()))
    a = np.arange(12).reshape(3, 4)
    assert np.array_equal(quaternion.as_float_array(quaternion.as_quat_array(a)),
                          a.astype(float))
    assert quaternion.as_float_array(quaternion.x).ndim == 1 
开发者ID:moble,项目名称:quaternion,代码行数:16,代码来源:test_quaternion.py

示例7: test_as_rotation_matrix

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def test_as_rotation_matrix(Rs):
    def quat_mat(quat):
        return np.array([(quat * v * quat.inverse()).vec for v in [quaternion.x, quaternion.y, quaternion.z]]).T

    def quat_mat_vec(quats):
        mat_vec = np.array([quaternion.as_float_array(quats * v * np.reciprocal(quats))[..., 1:]
                            for v in [quaternion.x, quaternion.y, quaternion.z]])
        return np.transpose(mat_vec, tuple(range(mat_vec.ndim))[1:-1]+(-1, 0))

    with pytest.raises(ZeroDivisionError):
        quaternion.as_rotation_matrix(quaternion.zero)

    for R in Rs:
        # Test correctly normalized rotors:
        assert allclose(quat_mat(R), quaternion.as_rotation_matrix(R), atol=2*eps)
        # Test incorrectly normalized rotors:
        assert allclose(quat_mat(R), quaternion.as_rotation_matrix(1.1*R), atol=2*eps)

    Rs0 = Rs.copy()
    Rs0[Rs.shape[0]//2] = quaternion.zero
    with pytest.raises(ZeroDivisionError):
        quaternion.as_rotation_matrix(Rs0)

    # Test correctly normalized rotors:
    assert allclose(quat_mat_vec(Rs), quaternion.as_rotation_matrix(Rs), atol=2*eps)
    # Test incorrectly normalized rotors:
    assert allclose(quat_mat_vec(Rs), quaternion.as_rotation_matrix(1.1*Rs), atol=2*eps)

    # Simply test that this function succeeds and returns the right shape
    assert quaternion.as_rotation_matrix(Rs.reshape((2, 5, 10))).shape == (2, 5, 10, 3, 3) 
开发者ID:moble,项目名称:quaternion,代码行数:32,代码来源:test_quaternion.py

示例8: SWSH

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def SWSH(R, s, indices):
    """Spin-weighted spherical harmonic calculation from rotor

    Note that this function is more general than standard Ylm and sYlm functions of angles because it uses quaternion
    rotors instead of angle, and is slightly faster as a result.

    This function can be called in either of two ways:
      1) With an array of quaternions, and a single (ell,m) pair, or
      2) with a single quaternion, and an array of (ell,m) values

    Parameters
    ----------
    R : unit quaternion or array of unit quaternions
        Rotor on which to evaluate the SWSH function.
    s : int
        Spin weight of the field to evaluate
    indices : 2-d array of int or pair of ints
        Array of (ell,m) values to evaluate

    Returns
    -------
    array of complex
        The shape of this array is `indices.shape[0]`, and contains the values of the SWSH for the (ell,m) values
        specified in `indices`.

    """
    indices = np.asarray(indices)
    if indices.size > 2 or not isinstance(R, np.ndarray):
        values = np.empty((indices.shape[0],), dtype=complex)
        _SWSH(R.a, R.b, s, indices, values)
    else:
        values = np.empty((R.size,), dtype=complex)
        _SWSHs(quaternion.as_float_array(R.flatten()), s, indices[0], indices[1], values)
        values = values.reshape(R.shape)
    return values 
开发者ID:moble,项目名称:spherical_functions,代码行数:37,代码来源:__init__.py

示例9: load

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def load(self, path):
        if path[-1] == '/':
            path = path[:-1]

        self.info['path'] = osp.split(path)[-1]
        self.info['ori_source'] = 'game_rv'

        if osp.exists(osp.join(path, 'processed/data.csv')):
            imu_all = pandas.read_csv(osp.join(path, 'processed/data.csv'))
        else:
            imu_all = pandas.read_pickle(osp.join(path, 'processed/data.pkl'))

        ts = imu_all[['time']].values / 1e09
        gyro = imu_all[['gyro_x', 'gyro_y', 'gyro_z']].values
        acce = imu_all[['acce_x', 'acce_y', 'acce_z']].values
        tango_pos = imu_all[['pos_x', 'pos_y', 'pos_z']].values

        # Use game rotation vector as device orientation.
        init_tango_ori = quaternion.quaternion(*imu_all[['ori_w', 'ori_x', 'ori_y', 'ori_z']].values[0])
        game_rv = quaternion.from_float_array(imu_all[['rv_w', 'rv_x', 'rv_y', 'rv_z']].values)

        init_rotor = init_tango_ori * game_rv[0].conj()
        ori = init_rotor * game_rv

        nz = np.zeros(ts.shape)
        gyro_q = quaternion.from_float_array(np.concatenate([nz, gyro], axis=1))
        acce_q = quaternion.from_float_array(np.concatenate([nz, acce], axis=1))

        gyro_glob = quaternion.as_float_array(ori * gyro_q * ori.conj())[:, 1:]
        acce_glob = quaternion.as_float_array(ori * acce_q * ori.conj())[:, 1:]

        self.ts = ts
        self.features = np.concatenate([gyro_glob, acce_glob], axis=1)
        self.targets = (tango_pos[self.w:, :2] - tango_pos[:-self.w, :2]) / (ts[self.w:] - ts[:-self.w])
        self.gt_pos = tango_pos
        self.orientations = quaternion.as_float_array(game_rv)
        print(self.ts.shape, self.features.shape, self.targets.shape, self.gt_pos.shape, self.orientations.shape,
              self.w) 
开发者ID:Sachini,项目名称:ronin,代码行数:40,代码来源:data_ridi.py

示例10: load

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def load(self, data_path):
        if data_path[-1] == '/':
            data_path = data_path[:-1]
        with open(osp.join(data_path, 'info.json')) as f:
            self.info = json.load(f)

        self.info['path'] = osp.split(data_path)[-1]

        self.info['ori_source'], ori, self.info['source_ori_error'] = select_orientation_source(
            data_path, self.max_ori_error, self.grv_only)

        with h5py.File(osp.join(data_path, 'data.hdf5')) as f:
            gyro_uncalib = f['synced/gyro_uncalib']
            acce_uncalib = f['synced/acce']
            gyro = gyro_uncalib - np.array(self.info['imu_init_gyro_bias'])
            acce = np.array(self.info['imu_acce_scale']) * (acce_uncalib - np.array(self.info['imu_acce_bias']))
            ts = np.copy(f['synced/time'])
            tango_pos = np.copy(f['pose/tango_pos'])
            init_tango_ori = quaternion.quaternion(*f['pose/tango_ori'][0])

        # Compute the IMU orientation in the Tango coordinate frame.
        ori_q = quaternion.from_float_array(ori)
        rot_imu_to_tango = quaternion.quaternion(*self.info['start_calibration'])
        init_rotor = init_tango_ori * rot_imu_to_tango * ori_q[0].conj()
        ori_q = init_rotor * ori_q

        dt = (ts[self.w:] - ts[:-self.w])[:, None]
        glob_v = (tango_pos[self.w:] - tango_pos[:-self.w]) / dt

        gyro_q = quaternion.from_float_array(np.concatenate([np.zeros([gyro.shape[0], 1]), gyro], axis=1))
        acce_q = quaternion.from_float_array(np.concatenate([np.zeros([acce.shape[0], 1]), acce], axis=1))
        glob_gyro = quaternion.as_float_array(ori_q * gyro_q * ori_q.conj())[:, 1:]
        glob_acce = quaternion.as_float_array(ori_q * acce_q * ori_q.conj())[:, 1:]

        start_frame = self.info.get('start_frame', 0)
        self.ts = ts[start_frame:]
        self.features = np.concatenate([glob_gyro, glob_acce], axis=1)[start_frame:]
        self.targets = glob_v[start_frame:, :2]
        self.orientations = quaternion.as_float_array(ori_q)[start_frame:]
        self.gt_pos = tango_pos[start_frame:] 
开发者ID:Sachini,项目名称:ronin,代码行数:42,代码来源:data_glob_speed.py

示例11: angle_between_quaternions

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def angle_between_quaternions(q1: np.quaternion, q2: np.quaternion) -> float:
    r"""Returns the angle (in radians) between two quaternions. This angle will
    always be positive.
    """
    q1_inv = np.conjugate(q1)
    dq = quaternion.as_float_array(q1_inv * q2)

    return 2 * np.arctan2(np.linalg.norm(dq[1:]), np.abs(dq[0])) 
开发者ID:facebookresearch,项目名称:habitat-api,代码行数:10,代码来源:geometry_utils.py

示例12: q_from_rotation_matrix

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def q_from_rotation_matrix(R):
  q = quaternion.as_float_array(quaternion.from_rotation_matrix(R))
  return q 
开发者ID:simonmeister,项目名称:motion-rcnn,代码行数:5,代码来源:create_vkitti_tf_record.py

示例13: test_numpy_array_conversion

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def test_numpy_array_conversion(Qs):
    "Check conversions between array as quaternions and array as floats"
    # First, just check 1-d array
    Q = Qs[Qs_nonnan][:12]  # Select first 3x4=12 non-nan elements in Qs
    assert Q.dtype == np.dtype(np.quaternion)
    q = quaternion.as_float_array(Q)  # View as array of floats
    assert q.dtype == np.dtype(np.float)
    assert q.shape == (12, 4)  # This is the expected shape
    for j in range(12):
        for k in range(4):  # Check each component individually
            assert q[j][k] == Q[j].components[k]
    assert np.array_equal(quaternion.as_quat_array(q), Q)  # Check that we can go backwards
    # Next, see how that works if I flatten the q array
    q = q.flatten()
    assert q.dtype == np.dtype(np.float)
    assert q.shape == (48,)
    for j in range(48):
        assert q[j] == Q[j // 4].components[j % 4]
    assert np.array_equal(quaternion.as_quat_array(q), Q)  # Check that we can go backwards
    # Now, reshape into 2-d array, and re-check
    P = Q.reshape(3, 4)  # Reshape into 3x4 array of quaternions
    p = quaternion.as_float_array(P)  # View as array of floats
    assert p.shape == (3, 4, 4)  # This is the expected shape
    for j in range(3):
        for k in range(4):
            for l in range(4):  # Check each component individually
                assert p[j][k][l] == Q[4 * j + k].components[l]
    assert np.array_equal(quaternion.as_quat_array(p), P)  # Check that we can go backwards
    # Check that we get an exception if the final dimension is not divisible by 4
    with pytest.raises(ValueError):
        quaternion.as_quat_array(np.random.rand(4, 1))
    with pytest.raises(ValueError):
        quaternion.as_quat_array(np.random.rand(4, 2))
    with pytest.raises(ValueError):
        quaternion.as_quat_array(np.random.rand(4, 3))
    with pytest.raises(ValueError):
        quaternion.as_quat_array(np.random.rand(4, 5))
    with pytest.raises(ValueError):
        quaternion.as_quat_array(np.random.rand(4, 5, 3, 2, 1))
    # Finally, check that it works on non-contiguous arrays, by adding random padding and then slicing
    q = quaternion.as_float_array(Q)
    q = np.concatenate((np.random.rand(q.shape[0], 3), q, np.random.rand(q.shape[0], 3)), axis=1)
    assert np.array_equal(quaternion.as_quat_array(q[:, 3:7]), Q) 
开发者ID:moble,项目名称:quaternion,代码行数:45,代码来源:test_quaternion.py

示例14: load

# 需要导入模块: import quaternion [as 别名]
# 或者: from quaternion import as_float_array [as 别名]
def load(self, data_path):
        if data_path[-1] == '/':
            data_path = data_path[:-1]
        with open(osp.join(data_path, 'info.json')) as f:
            self.info = json.load(f)
        self.info['path'] = osp.split(data_path)[-1]

        self.info['ori_source'], ori, self.info['source_ori_error'] = select_orientation_source(
            data_path, self.max_ori_error, self.grv_only)

        with h5py.File(osp.join(data_path, 'data.hdf5')) as f:
            ts = np.copy(f['synced/time'])
            if 'synced/grav' in f:
                gravity = np.copy(f['synced/grav'])
            else:
                gravity = np.copy(f['synced/gravity'])
            tango_pos = np.copy(f['pose/tango_pos'])
            init_tango_ori = quaternion.quaternion(*f['pose/tango_ori'][0])
            gyro = np.copy(f['synced/gyro'])
            linacce = np.copy(f['synced/linacce'])

        # Compute the IMU orientation in the Tango coordinate frame.
        ori_q = quaternion.from_float_array(ori)
        rot_imu_to_tango = quaternion.quaternion(*self.info['start_calibration'])
        init_rotor = init_tango_ori * rot_imu_to_tango * ori_q[0].conj()
        ori_q = init_rotor * ori_q

        dt = (ts[self.w:] - ts[:-self.w])[:, None]
        glob_v = np.concatenate(
            [np.zeros([dt.shape[0], 1]), tango_pos[self.w:] - tango_pos[:-self.w]], axis=1) / dt

        local_v = ori_q[:-self.w].conj() * quaternion.from_float_array(glob_v) * ori_q[:-self.w]
        local_v = quaternion.as_float_array(local_v)[:, 1:]
        local_v_g = align_3dvector_with_gravity(local_v, gravity[:-self.w])

        start_frame = self.info.get('start_frame', 0)
        self.ts = ts[start_frame:]
        self.features = np.concatenate([gyro, linacce], axis=1)[start_frame:]
        self.targets = local_v_g[start_frame:, [0, 2]]
        self.orientations = quaternion.as_float_array(ori_q)[start_frame:]
        self.gt_pos = tango_pos[start_frame:]
        self.gravity = gravity[start_frame:] 
开发者ID:Sachini,项目名称:ronin,代码行数:44,代码来源:data_stabilized_local_speed.py


注:本文中的quaternion.as_float_array方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。