当前位置: 首页>>代码示例>>Python>>正文


Python sql.DataFrame方法代码示例

本文整理汇总了Python中pyspark.sql.DataFrame方法的典型用法代码示例。如果您正苦于以下问题:Python sql.DataFrame方法的具体用法?Python sql.DataFrame怎么用?Python sql.DataFrame使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyspark.sql的用法示例。


在下文中一共展示了sql.DataFrame方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: append_features

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def append_features(df, *cols):
    """Append features from columns to the features vector.

    Parameters
    ----------
    df : pyspark.sql.DataFrame
    cols : list of str

    Returns
    -------
    pyspark.sql.DataFrame
    """
    def add_features(feat, *other):
        raw = feat.toArray()
        return Vectors.dense(np.append(raw, list(map(float, other))))
    add_features_udf = F.udf(add_features, VectorUDT())
    new_feat_list = df.schema['features'].metadata['features'] + cols
    return df.withColumn('features', mjolnir.spark.add_meta(
        df._sc, add_features_udf('features', *cols), {'features': new_feat_list})) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:21,代码来源:feature_engineering.py

示例2: zero_features

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def zero_features(df, *feature_names):
    """Zero out features in the feature vector.

    Parameters
    ----------
    df : pyspark.sql.DataFrame
    feature_names : list of str

    Returns
    -------
    pyspark.sql.DataFrame
    """
    features = df.schema['features'].metadata['features']
    idxs = [features.index(name) for name in feature_names]

    def zero_features(feat):
        raw = feat.toArray()
        for idx in idxs:
            raw[idx] = 0.
        return Vectors.dense(raw)
    zero_features_udf = F.udf(zero_features, VectorUDT())
    return df.withColumn('features', mjolnir.spark.add_meta(
        df._sc, zero_features_udf('features'), {'features': features})) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:25,代码来源:feature_engineering.py

示例3: explode_features

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def explode_features(df, features=None):
    """Convert feature vector into individual columns

    Parameters
    ----------
    df : pyspark.sql.DataFrame
    features : list of str or None

    Returns
    -------
    pyspark.sql.DataFrame
    """
    if features is None:
        features = df.schema['features'].metadata['features']

    def extract_feature(features, idx):
        return float(features[idx])
    extract_feature_udf = F.udf(extract_feature, pyspark.sql.types.FloatType())
    cols = [extract_feature_udf('features', F.lit(idx)).alias(name) for idx, name in enumerate(features)]
    return df.select('*', *cols) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:22,代码来源:feature_engineering.py

示例4: resample_clicks_to_query_page

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def resample_clicks_to_query_page(
    df_cluster: DataFrame,
    random_seed: Optional[int],
    samples_per_wiki: int
) -> mt.Transformer:
    # Resamples the click log by proxy of resampling clusters, such
    # that a complete cluster is either included or excluded from the
    # resulting dataset.
    # TODO: Evaluate alternative resampling, such as perhaps only dropping from
    # clusters where all clicks were to the top result (implying an "easy" search).

    mt.check_schema(df_cluster, mt.QueryClustering)
    return mt.seq_transform([
        # Grab only the parts of the query log we need to make the resulting sampled QueryPage
        lambda df: df.select('query', 'wikiid', 'session_id', 'hit_page_ids'),
        mt.join_cluster_by_query(df_cluster),
        # [1] is because sample returns a tuple of (page_counts, df)
        mt.temp_rename_col('cluster_id', 'norm_query_id', lambda df: mjolnir.sampling.sample(
            df, random_seed, samples_per_wiki)[1]),
        lambda df: df.withColumn(
            'page_id', F.explode('hit_page_ids')).drop('hit_page_ids')
    ]) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:24,代码来源:feature_vectors.py

示例5: transform

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def transform(
    query_clicks: HivePartition,
    query_clustering: HivePartition,
    samples_per_wiki: int,
    random_seed: Optional[int],
    wikis: List[str],
    brokers: str,
    topic_request: str,
    topic_response: str,
    feature_set: str,
    **kwargs
) -> DataFrame:
    transformer = mt.seq_transform([
        mt.restrict_wikis(wikis),
        resample_clicks_to_query_page(
            query_clustering.df, random_seed, samples_per_wiki),
        feature_vectors.transformer(
            brokers, topic_request, topic_response, feature_set)
    ])
    return transformer(query_clicks.df) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:22,代码来源:feature_vectors.py

示例6: require_output_table

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def require_output_table(
        self, partition_spec_spec, metadata_fn=None,
        mode='overwrite',
    ):
        @self._post_process_transform.append
        def post(df: DataFrame, kwargs: Dict):
            mt.write_partition(
                df, kwargs['output_table'], kwargs['output_path'],
                self._resolve_partition_spec(kwargs, partition_spec_spec),
                mode=mode)
            if metadata_fn is not None:
                spark = df.sql_ctx.sparkSession
                metadata = metadata_fn(spark.read.parquet(kwargs['output_path']))
                write_metadata(kwargs['output_path'], metadata)

        self.add_argument('--output-table', required=True)
        self.add_argument('--output-path', required=True) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:19,代码来源:helpers.py

示例7: collect_features

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def collect_features(
    kafka_config: ClientConfig, feature_set: str
) -> mt.Transformer:
    def transform(df: DataFrame) -> DataFrame:
        df_features, fnames_accu = mjolnir.features.collect(
            df,
            model='featureset:' + feature_set,
            brokers=kafka_config,
            indices=mt.ContentIndices())
        # Collect the accumulator to get feature names
        df_features.cache().count()
        # Future transformations have to be extra careful to not lose this metadata
        return _add_meta(df_features, 'features', {
            'feature_set': feature_set,
            'features': _check_features(fnames_accu),
            'collected_at': datetime.datetime.now().isoformat()
        })
    return transform 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:20,代码来源:feature_vectors.py

示例8: select_features

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def select_features(
    wiki: str,
    num_features: int,
    metadata: Dict
) -> mt.Transformer:
    def transform(df: DataFrame) -> DataFrame:
        # Compute the "best" features, per some metric
        sc = df.sql_ctx.sparkSession.sparkContext
        features = metadata['input_feature_meta']['features']
        selected = mjolnir.feature_engineering.select_features(
            sc, df, features, num_features, algo='mrmr')
        metadata['wiki_features'][wiki] = selected

        # Rebuild the `features` col with only the selected features
        keep_cols = metadata['default_cols'] + selected
        df_selected = df.select(*keep_cols)
        assembler = VectorAssembler(
            inputCols=selected, outputCol='features')
        return assembler.transform(df_selected).drop(*selected)
    return transform 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:22,代码来源:feature_selection.py

示例9: transformer

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def transformer(
    df_label: DataFrame,
    temp_dir: str,
    wikis: List[str],
    num_features: int
) -> mt.Transformer:
    mt.check_schema(df_label, mt.LabeledQueryPage)

    # Hack to transfer metadata between transformations. This is populated in
    # time since `select_features` does direct computation of the features.
    metadata = cast(Dict, {'wiki_features': {}})

    return mt.seq_transform([
        mt.restrict_wikis(wikis),
        mt.join_labels(df_label),
        explode_features(metadata),
        mt.cache_to_disk(temp_dir, partition_by='wikiid'),
        mt.for_each_item('wikiid', wikis, lambda wiki: select_features(
            wiki, num_features, metadata)),
        attach_feature_metadata(metadata),
        # While we used the labels for selecting features, they are not part of the feature vectors.
        # Allow them to be joined with any other label set for export to training.
        lambda df: df.drop('cluster_id', 'label'),
        lambda df: df.repartition(200, 'wikiid', 'query'),
    ]) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:27,代码来源:feature_selection.py

示例10: convert_svmrank_to_xgboost

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def convert_svmrank_to_xgboost(df: DataFrame) -> DataFrame:
    def convert_one(row: Row) -> Row:
        # For now place the .xgb right next to the svmrank files. Naming/path
        # options could be added if needed later.
        out_path = row.path + '.xgb'
        _convert_xgboost_remote(row.path, out_path)
        return Row(**dict(
            row.asDict(),
            vec_format='xgboost',
            path=out_path))

    # Each row represents potentially gigabytes, convince spark
    # to create a partition per row.
    rdd_xgb = mt.partition_per_row(df.rdd).map(convert_one)
    df_xgb = df.sql_ctx.createDataFrame(rdd_xgb, df.schema)  # type: ignore
    # Return both the xgb and svmrank datasets since
    # we aren't purging the related files. df is safe to reuse since
    # svmrank conversion returns a new dataframe with no lineage.
    return df.union(df_xgb) 
开发者ID:wikimedia,项目名称:search-MjoLniR,代码行数:21,代码来源:make_folds.py

示例11: test_gaussian_mixture_summary

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def test_gaussian_mixture_summary(self):
        data = [(Vectors.dense(1.0),), (Vectors.dense(5.0),), (Vectors.dense(10.0),),
                (Vectors.sparse(1, [], []),)]
        df = self.spark.createDataFrame(data, ["features"])
        gmm = GaussianMixture(k=2)
        model = gmm.fit(df)
        self.assertTrue(model.hasSummary)
        s = model.summary
        self.assertTrue(isinstance(s.predictions, DataFrame))
        self.assertEqual(s.probabilityCol, "probability")
        self.assertTrue(isinstance(s.probability, DataFrame))
        self.assertEqual(s.featuresCol, "features")
        self.assertEqual(s.predictionCol, "prediction")
        self.assertTrue(isinstance(s.cluster, DataFrame))
        self.assertEqual(len(s.clusterSizes), 2)
        self.assertEqual(s.k, 2)
        self.assertEqual(s.numIter, 3) 
开发者ID:runawayhorse001,项目名称:LearningApacheSpark,代码行数:19,代码来源:tests.py

示例12: assignClusters

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def assignClusters(self, dataset):
        """
        Run the PIC algorithm and returns a cluster assignment for each input vertex.

        :param dataset:
          A dataset with columns src, dst, weight representing the affinity matrix,
          which is the matrix A in the PIC paper. Suppose the src column value is i,
          the dst column value is j, the weight column value is similarity s,,ij,,
          which must be nonnegative. This is a symmetric matrix and hence
          s,,ij,, = s,,ji,,. For any (i, j) with nonzero similarity, there should be
          either (i, j, s,,ij,,) or (j, i, s,,ji,,) in the input. Rows with i = j are
          ignored, because we assume s,,ij,, = 0.0.

        :return:
          A dataset that contains columns of vertex id and the corresponding cluster for
          the id. The schema of it will be:
          - id: Long
          - cluster: Int

        .. versionadded:: 2.4.0
        """
        self._transfer_params_to_java()
        jdf = self._java_obj.assignClusters(dataset._jdf)
        return DataFrame(jdf, dataset.sql_ctx) 
开发者ID:runawayhorse001,项目名称:LearningApacheSpark,代码行数:26,代码来源:clustering.py

示例13: _py2java

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def _py2java(sc, obj):
    """ Convert Python object into Java """
    if isinstance(obj, RDD):
        obj = _to_java_object_rdd(obj)
    elif isinstance(obj, DataFrame):
        obj = obj._jdf
    elif isinstance(obj, SparkContext):
        obj = obj._jsc
    elif isinstance(obj, list):
        obj = [_py2java(sc, x) for x in obj]
    elif isinstance(obj, JavaObject):
        pass
    elif isinstance(obj, (int, long, float, bool, bytes, unicode)):
        pass
    else:
        data = bytearray(PickleSerializer().dumps(obj))
        obj = sc._jvm.org.apache.spark.ml.python.MLSerDe.loads(data)
    return obj 
开发者ID:runawayhorse001,项目名称:LearningApacheSpark,代码行数:20,代码来源:common.py

示例14: _prepare

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def _prepare(cls, ratings):
        if isinstance(ratings, RDD):
            pass
        elif isinstance(ratings, DataFrame):
            ratings = ratings.rdd
        else:
            raise TypeError("Ratings should be represented by either an RDD or a DataFrame, "
                            "but got %s." % type(ratings))
        first = ratings.first()
        if isinstance(first, Rating):
            pass
        elif isinstance(first, (tuple, list)):
            ratings = ratings.map(lambda x: Rating(*x))
        else:
            raise TypeError("Expect a Rating or a tuple/list, but got %s." % type(first))
        return ratings 
开发者ID:runawayhorse001,项目名称:LearningApacheSpark,代码行数:18,代码来源:recommendation.py

示例15: _py2java

# 需要导入模块: from pyspark import sql [as 别名]
# 或者: from pyspark.sql import DataFrame [as 别名]
def _py2java(sc, obj):
    """ Convert Python object into Java """
    if isinstance(obj, RDD):
        obj = _to_java_object_rdd(obj)
    elif isinstance(obj, DataFrame):
        obj = obj._jdf
    elif isinstance(obj, SparkContext):
        obj = obj._jsc
    elif isinstance(obj, list):
        obj = [_py2java(sc, x) for x in obj]
    elif isinstance(obj, JavaObject):
        pass
    elif isinstance(obj, (int, long, float, bool, bytes, unicode)):
        pass
    else:
        data = bytearray(PickleSerializer().dumps(obj))
        obj = sc._jvm.org.apache.spark.mllib.api.python.SerDe.loads(data)
    return obj 
开发者ID:runawayhorse001,项目名称:LearningApacheSpark,代码行数:20,代码来源:common.py


注:本文中的pyspark.sql.DataFrame方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。