当前位置: 首页>>代码示例>>Python>>正文


Python feature.Word2Vec方法代码示例

本文整理汇总了Python中pyspark.mllib.feature.Word2Vec方法的典型用法代码示例。如果您正苦于以下问题:Python feature.Word2Vec方法的具体用法?Python feature.Word2Vec怎么用?Python feature.Word2Vec使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyspark.mllib.feature的用法示例。


在下文中一共展示了feature.Word2Vec方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_word2vec_setters

# 需要导入模块: from pyspark.mllib import feature [as 别名]
# 或者: from pyspark.mllib.feature import Word2Vec [as 别名]
def test_word2vec_setters(self):
        model = Word2Vec() \
            .setVectorSize(2) \
            .setLearningRate(0.01) \
            .setNumPartitions(2) \
            .setNumIterations(10) \
            .setSeed(1024) \
            .setMinCount(3) \
            .setWindowSize(6)
        self.assertEqual(model.vectorSize, 2)
        self.assertTrue(model.learningRate < 0.02)
        self.assertEqual(model.numPartitions, 2)
        self.assertEqual(model.numIterations, 10)
        self.assertEqual(model.seed, 1024)
        self.assertEqual(model.minCount, 3)
        self.assertEqual(model.windowSize, 6) 
开发者ID:alec-heif,项目名称:MIT-Thesis,代码行数:18,代码来源:tests.py

示例2: create_model_text

# 需要导入模块: from pyspark.mllib import feature [as 别名]
# 或者: from pyspark.mllib.feature import Word2Vec [as 别名]
def create_model_text(self, data, params):

        learningRate = float(params.get('learningRate', 0.025))
        numIterations = int(params.get('numIterations', 10))
        minCount = int(params.get('minCount', 5))

        word2vec = Word2Vec()
        word2vec.setLearningRate(learningRate)
        word2vec.setNumIterations(numIterations)
        word2vec.setMinCount(minCount)

        inp = data.map(lambda row: row.split(" "))
        return word2vec.fit(inp) 
开发者ID:openstack,项目名称:meteos,代码行数:15,代码来源:meteos-script-1.6.0.py

示例3: main

# 需要导入模块: from pyspark.mllib import feature [as 别名]
# 或者: from pyspark.mllib.feature import Word2Vec [as 别名]
def main(in_loc, out_dir):
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
                        level=logging.INFO)

    sc = ps.SparkContext(appName='Word2Vec')
    logger.info('Distributing input data')
    raw_data = sc.textFile(in_loc).cache()
    data = raw_data.map(lambda line: line.split(' '))
    print(data.getNumPartitions())

    logger.info('Training Word2Vec model')
    model = Word2Vec().setVectorSize(128).setNumIterations(5).fit(data)

    w2v_dict = model.getVectors()
    logger.info('Saving word to vectors dictionary')
    with open(path.join(out_dir, 'w2v_dict.pkl'), 'wb') as f:
        cPickle.dump(w2v_dict, f, cPickle.HIGHEST_PROTOCOL)

    model.save(sc, out_dir) 
开发者ID:gushecht,项目名称:noungroups,代码行数:21,代码来源:spark_word2vec.py

示例4: init_model_controller

# 需要导入模块: from pyspark.mllib import feature [as 别名]
# 或者: from pyspark.mllib.feature import Word2Vec [as 别名]
def init_model_controller(self):

        model_type = self.job_args['model']['type']

        if model_type == 'KMeans':
            self.controller = KMeansModelController()
        elif model_type == 'Recommendation':
            self.controller = RecommendationController()
        elif model_type == 'LogisticRegression':
            self.controller = LogisticRegressionModelController()
        elif model_type == 'LinearRegression':
            self.controller = LinearRegressionModelController()
        elif model_type == 'RidgeRegression':
            self.controller = RidgeRegressionModelController()
        elif model_type == 'DecisionTreeRegression':
            self.controller = DecisionTreeModelController('Regression')
        elif model_type == 'DecisionTreeClassification':
            self.controller = DecisionTreeModelController('Classification')
        elif model_type == 'RandomForestRegression':
            self.controller = RandomForestModelController('Regression')
        elif model_type == 'RandomForestClassification':
            self.controller = RandomForestModelController('Classification')
        elif model_type == 'Word2Vec':
            self.controller = Word2VecModelController()
        elif model_type == 'FPGrowth':
            self.controller = FPGrowthModelController()
        elif model_type == 'NaiveBayes':
            self.controller = NaiveBayesModelController() 
开发者ID:openstack,项目名称:meteos,代码行数:30,代码来源:meteos-script-1.6.0.py

示例5: test_word2vec_get_vectors

# 需要导入模块: from pyspark.mllib import feature [as 别名]
# 或者: from pyspark.mllib.feature import Word2Vec [as 别名]
def test_word2vec_get_vectors(self):
        data = [
            ["a", "b", "c", "d", "e", "f", "g"],
            ["a", "b", "c", "d", "e", "f"],
            ["a", "b", "c", "d", "e"],
            ["a", "b", "c", "d"],
            ["a", "b", "c"],
            ["a", "b"],
            ["a"]
        ]
        model = Word2Vec().fit(self.sc.parallelize(data))
        self.assertEqual(len(model.getVectors()), 3) 
开发者ID:alec-heif,项目名称:MIT-Thesis,代码行数:14,代码来源:tests.py

示例6: generate_word2vec_model

# 需要导入模块: from pyspark.mllib import feature [as 别名]
# 或者: from pyspark.mllib.feature import Word2Vec [as 别名]
def generate_word2vec_model(doc):
    return Word2Vec().setVectorSize(10).setSeed(410).fit(doc) 
开发者ID:hanhanwu,项目名称:Hanhan_Play_With_Social_Media,代码行数:4,代码来源:reddit_word2vec.py

示例7: test_word2vec_setters

# 需要导入模块: from pyspark.mllib import feature [as 别名]
# 或者: from pyspark.mllib.feature import Word2Vec [as 别名]
def test_word2vec_setters(self):
        model = Word2Vec() \
            .setVectorSize(2) \
            .setLearningRate(0.01) \
            .setNumPartitions(2) \
            .setNumIterations(10) \
            .setSeed(1024) \
            .setMinCount(3)
        self.assertEqual(model.vectorSize, 2)
        self.assertTrue(model.learningRate < 0.02)
        self.assertEqual(model.numPartitions, 2)
        self.assertEqual(model.numIterations, 10)
        self.assertEqual(model.seed, 1024)
        self.assertEqual(model.minCount, 3) 
开发者ID:v-v-vishnevskiy,项目名称:pyspark,代码行数:16,代码来源:tests.py


注:本文中的pyspark.mllib.feature.Word2Vec方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。