本文整理汇总了Python中pyspark.ml.Pipeline方法的典型用法代码示例。如果您正苦于以下问题:Python ml.Pipeline方法的具体用法?Python ml.Pipeline怎么用?Python ml.Pipeline使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyspark.ml
的用法示例。
在下文中一共展示了ml.Pipeline方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: unwrap
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def unwrap(pipeline):
if not (isinstance(pipeline, Pipeline) or isinstance(pipeline, PipelineModel)):
raise TypeError("Cannot recognize a pipeline of type %s." % type(pipeline))
stages = pipeline.getStages() if isinstance(pipeline, Pipeline) else pipeline.stages
for i, stage in enumerate(stages):
if (isinstance(stage, Pipeline) or isinstance(stage, PipelineModel)):
stages[i] = PysparkPipelineWrapper.unwrap(stage)
if isinstance(stage, PysparkObjId._getCarrierClass()) and stage.getStopWords()[-1] == PysparkObjId._getPyObjId():
swords = stage.getStopWords()[:-1] # strip the id
py_obj = load_byte_array(swords)
stages[i] = py_obj
if isinstance(pipeline, Pipeline):
pipeline.setStages(stages)
else:
pipeline.stages = stages
return pipeline
示例2: test_featurizer_in_pipeline
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def test_featurizer_in_pipeline(self):
"""
Tests that featurizer fits into an MLlib Pipeline.
Does not test how good the featurization is for generalization.
"""
featurizer = DeepImageFeaturizer(inputCol="image", outputCol="features",
modelName=self.name)
lr = LogisticRegression(maxIter=20, regParam=0.05, elasticNetParam=0.3, labelCol="label")
pipeline = Pipeline(stages=[featurizer, lr])
# add arbitrary labels to run logistic regression
# TODO: it's weird that the test fails on some combinations of labels. check why.
label_udf = udf(lambda x: abs(hash(x)) % 2, IntegerType())
train_df = self.imageDF.withColumn("label", label_udf(self.imageDF["image"]["origin"]))
lrModel = pipeline.fit(train_df)
# see if we at least get the training examples right.
# with 5 examples and e.g. 131k features (for InceptionV3), it ought to.
pred_df_collected = lrModel.transform(train_df).collect()
for row in pred_df_collected:
self.assertEqual(int(row.prediction), row.label)
示例3: unwrap
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def unwrap(pipeline):
if not (isinstance(pipeline, Pipeline) or isinstance(pipeline, PipelineModel)):
raise TypeError("Cannot recognize a pipeline of type %s." % type(pipeline))
stages = pipeline.getStages() if isinstance(pipeline, Pipeline) else pipeline.stages
for i, stage in enumerate(stages):
if (isinstance(stage, Pipeline) or isinstance(stage, PipelineModel)):
stages[i] = PysparkPipelineWrapper.unwrap(stage)
if isinstance(stage, PysparkObjId._getCarrierClass()) and stage.getStopWords()[-1] == PysparkObjId._getPyObjId():
swords = stage.getStopWords()[:-1] # strip the id
py_obj = load_byte_array(swords)
stages[i] = py_obj
if isinstance(pipeline, Pipeline):
pipeline.setStages(stages)
else:
pipeline.stages = stages
return pipeline
示例4: compute_clusters
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def compute_clusters(addons_df, num_clusters, random_seed):
""" Performs user clustering by using add-on ids as features.
"""
# Build the stages of the pipeline. We need hashing to make the next
# steps work.
hashing_stage = HashingTF(inputCol="addon_ids", outputCol="hashed_features")
idf_stage = IDF(
inputCol="hashed_features", outputCol="features", minDocFreq=1
)
# As a future improvement, we may add a sane value for the minimum cluster size
# to BisectingKMeans (e.g. minDivisibleClusterSize). For now, just make sure
# to pass along the random seed if needed for tests.
kmeans_kwargs = {"seed": random_seed} if random_seed else {}
bkmeans_stage = BisectingKMeans(k=num_clusters, **kmeans_kwargs)
pipeline = Pipeline(stages=[hashing_stage, idf_stage, bkmeans_stage])
# Run the pipeline and compute the results.
model = pipeline.fit(addons_df)
return model.transform(addons_df).select(["client_id", "prediction"])
示例5: compute_clusters
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def compute_clusters(addons_df, num_clusters, random_seed):
""" Performs user clustering by using add-on ids as features.
"""
# Build the stages of the pipeline. We need hashing to make the next
# steps work.
hashing_stage = HashingTF(inputCol="addon_ids", outputCol="hashed_features")
idf_stage = IDF(inputCol="hashed_features", outputCol="features", minDocFreq=1)
# As a future improvement, we may add a sane value for the minimum cluster size
# to BisectingKMeans (e.g. minDivisibleClusterSize). For now, just make sure
# to pass along the random seed if needed for tests.
kmeans_kwargs = {"seed": random_seed} if random_seed else {}
bkmeans_stage = BisectingKMeans(k=num_clusters, **kmeans_kwargs)
pipeline = Pipeline(stages=[hashing_stage, idf_stage, bkmeans_stage])
# Run the pipeline and compute the results.
model = pipeline.fit(addons_df)
return model.transform(addons_df).select(["client_id", "prediction"])
示例6: get_features_importance
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def get_features_importance(
rf_pipeline: pyspark.ml.PipelineModel, rf_index: int = -2, assembler_index: int = -3
) -> Dict[str, float]:
"""
Extract the features importance from a Pipeline model containing a RandomForestClassifier stage.
:param rf_pipeline: Input pipeline
:param rf_index: index of the RandomForestClassifier stage
:param assembler_index: index of the VectorAssembler stage
:return: feature importance for each feature in the RF model
"""
feature_names = [
x[: -len("_indexed")] if x.endswith("_indexed") else x
for x in rf_pipeline.stages[assembler_index].getInputCols()
]
return dict(zip(feature_names, rf_pipeline.stages[rf_index].featureImportances))
示例7: save_model
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def save_model(
rf_pipeline: pyspark.ml.PipelineModel, out_path: str, overwrite: bool = False
) -> None:
"""
Saves a Random Forest pipeline model.
:param rf_pipeline: Pipeline to save
:param out_path: Output path
:param overwrite: If set, will overwrite existing file(s) at output location
:return: Nothing
"""
logger.info("Saving model to %s" % out_path)
if overwrite:
rf_pipeline.write().overwrite().save(out_path)
else:
rf_pipeline.save(out_path)
示例8: testWorkflow
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def testWorkflow(self):
df = self.sqlContext.read.csv(os.path.join(os.path.dirname(__file__), "resources/Iris.csv"), header = True, inferSchema = True)
formula = RFormula(formula = "Species ~ .")
classifier = DecisionTreeClassifier()
pipeline = Pipeline(stages = [formula, classifier])
pipelineModel = pipeline.fit(df)
pmmlBuilder = PMMLBuilder(self.sc, df, pipelineModel) \
.verify(df.sample(False, 0.1))
pmml = pmmlBuilder.build()
self.assertIsInstance(pmml, JavaObject)
pmmlByteArray = pmmlBuilder.buildByteArray()
self.assertTrue(isinstance(pmmlByteArray, bytes) or isinstance(pmmlByteArray, bytearray))
pmmlString = pmmlByteArray.decode("UTF-8")
self.assertTrue("<PMML xmlns=\"http://www.dmg.org/PMML-4_3\" xmlns:data=\"http://jpmml.org/jpmml-model/InlineTable\" version=\"4.3\">" in pmmlString)
self.assertTrue("<VerificationFields>" in pmmlString)
pmmlBuilder = pmmlBuilder.putOption(classifier, "compact", False)
nonCompactFile = tempfile.NamedTemporaryFile(prefix = "pyspark2pmml-", suffix = ".pmml")
nonCompactPmmlPath = pmmlBuilder.buildFile(nonCompactFile.name)
pmmlBuilder = pmmlBuilder.putOption(classifier, "compact", True)
compactFile = tempfile.NamedTemporaryFile(prefix = "pyspark2pmml-", suffix = ".pmml")
compactPmmlPath = pmmlBuilder.buildFile(compactFile.name)
self.assertGreater(os.path.getsize(nonCompactPmmlPath), os.path.getsize(compactPmmlPath) + 100)
示例9: test_spark_ml_model
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def test_spark_ml_model(spark_context):
df = to_data_frame(spark_context, x_train, y_train, categorical=True)
test_df = to_data_frame(spark_context, x_test, y_test, categorical=True)
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
sgd_conf = optimizers.serialize(sgd)
# Initialize Spark ML Estimator
estimator = ElephasEstimator()
estimator.set_keras_model_config(model.to_yaml())
estimator.set_optimizer_config(sgd_conf)
estimator.set_mode("synchronous")
estimator.set_loss("categorical_crossentropy")
estimator.set_metrics(['acc'])
estimator.set_epochs(epochs)
estimator.set_batch_size(batch_size)
estimator.set_validation_split(0.1)
estimator.set_categorical_labels(True)
estimator.set_nb_classes(nb_classes)
# Fitting a model returns a Transformer
pipeline = Pipeline(stages=[estimator])
fitted_pipeline = pipeline.fit(df)
# Evaluate Spark model by evaluating the underlying model
prediction = fitted_pipeline.transform(test_df)
pnl = prediction.select("label", "prediction")
pnl.show(100)
prediction_and_label = pnl.rdd.map(lambda row: (row.label, row.prediction))
metrics = MulticlassMetrics(prediction_and_label)
print(metrics.precision())
print(metrics.recall())
示例10: main
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def main():
# Read training data as a DataFrame
sqlCt = SQLContext(sc)
trainDF = sqlCt.read.parquet(training_input)
testDF = sqlCt.read.parquet(testing_input)
tokenizer = Tokenizer(inputCol="text", outputCol="words")
evaluator = BinaryClassificationEvaluator()
# no parameter tuning
hashingTF_notuning = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features", numFeatures=1000)
lr_notuning = LogisticRegression(maxIter=20, regParam=0.1)
pipeline_notuning = Pipeline(stages=[tokenizer, hashingTF_notuning, lr_notuning])
model_notuning = pipeline_notuning.fit(trainDF)
prediction_notuning = model_notuning.transform(testDF)
notuning_output = evaluator.evaluate(prediction_notuning)
# for cross validation
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=20)
paramGrid = ParamGridBuilder()\
.addGrid(hashingTF.numFeatures, [1000, 5000, 10000])\
.addGrid(lr.regParam, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])\
.build()
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
cv = CrossValidator(estimator=pipeline, estimatorParamMaps=paramGrid, evaluator=evaluator, numFolds=2)
cvModel = cv.fit(trainDF)
# Make predictions on test documents. cvModel uses the best model found.
best_prediction = cvModel.transform(testDF)
best_output = evaluator.evaluate(best_prediction)
s = str(notuning_output) + '\n' + str(best_output)
output_data = sc.parallelize([s])
output_data.saveAsTextFile(output)
示例11: make_vectorizer
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def make_vectorizer(stopwords=True, tfidf=True, n_features=5000):
# Creates a vectorization pipeline that starts with tokenization
stages = [
Tokenizer(inputCol="text", outputCol="tokens"),
]
# Append stopwords to the pipeline if requested
if stopwords:
stages.append(
StopWordsRemover(
caseSensitive=False, outputCol="filtered_tokens",
inputCol=stages[-1].getOutputCol(),
),
)
# Create the Hashing term frequency vectorizer
stages.append(
HashingTF(
numFeatures=n_features,
inputCol=stages[-1].getOutputCol(),
outputCol="frequency"
)
)
# Append the IDF vectorizer if requested
if tfidf:
stages.append(
IDF(inputCol=stages[-1].getOutputCol(), outputCol="tfidf")
)
# Return the completed pipeline
return Pipeline(stages=stages)
## Main functionality
示例12: main
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def main(sc, spark):
# Load and vectorize the corpus
corpus = load_corpus(sc, spark)
vector = make_vectorizer().fit(corpus)
# Index the labels of the classification
labelIndex = StringIndexer(inputCol="label", outputCol="indexedLabel")
labelIndex = labelIndex.fit(corpus)
# Split the data into training and test sets
training, test = corpus.randomSplit([0.8, 0.2])
# Create the classifier
clf = LogisticRegression(
maxIter=10, regParam=0.3, elasticNetParam=0.8,
family="multinomial", labelCol="indexedLabel", featuresCol="tfidf")
# Create the model
model = Pipeline(stages=[
vector, labelIndex, clf
]).fit(training)
# Make predictions
predictions = model.transform(test)
predictions.select("prediction", "indexedLabel", "tfidf").show(5)
# Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(
labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))
gbtModel = model.stages[2]
print(gbtModel) # summary only
示例13: main
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def main(sc, spark):
# Load the Corpus
corpus = load_corpus(sc, spark)
# Create the vector/cluster pipeline
pipeline = Pipeline(stages=[
Tokenizer(inputCol="text", outputCol="tokens"),
Word2Vec(vectorSize=7, minCount=0, inputCol="tokens", outputCol="vecs"),
BisectingKMeans(k=10, featuresCol="vecs", maxIter=10),
])
# Fit the model
model = pipeline.fit(corpus)
corpus = model.transform(corpus)
# Evaluate clustering.
bkm = model.stages[-1]
cost = bkm.computeCost(corpus)
sizes = bkm.summary.clusterSizes
# TODO: compute cost of each cluster individually
# Get the text representation of each cluster.
wvec = model.stages[-2]
table = [["Cluster", "Size", "Terms"]]
for ci, c in enumerate(bkm.clusterCenters()):
ct = wvec.findSynonyms(c, 7)
size = sizes[ci]
terms = " ".join([row.word for row in ct.take(7)])
table.append([ci, size, terms])
# Print Results
print(tabulate(table))
print("Sum of square distance to center: {:0.3f}".format(cost))
示例14: train_als
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def train_als(ratings_data, split_prop, max_iter, reg_param, rank, cold_start_strategy):
seed = 42
spark = pyspark.sql.SparkSession.builder.getOrCreate()
ratings_df = spark.read.parquet(ratings_data)
(training_df, test_df) = ratings_df.randomSplit([split_prop, 1 - split_prop], seed=seed)
training_df.cache()
test_df.cache()
mlflow.log_metric("training_nrows", training_df.count())
mlflow.log_metric("test_nrows", test_df.count())
print('Training: {0}, test: {1}'.format(training_df.count(), test_df.count()))
als = (ALS()
.setUserCol("userId")
.setItemCol("movieId")
.setRatingCol("rating")
.setPredictionCol("predictions")
.setMaxIter(max_iter)
.setSeed(seed)
.setRegParam(reg_param)
.setColdStartStrategy(cold_start_strategy)
.setRank(rank))
als_model = Pipeline(stages=[als]).fit(training_df)
reg_eval = RegressionEvaluator(predictionCol="predictions", labelCol="rating", metricName="mse")
predicted_test_dF = als_model.transform(test_df)
test_mse = reg_eval.evaluate(predicted_test_dF)
train_mse = reg_eval.evaluate(als_model.transform(training_df))
print('The model had a MSE on the test set of {0}'.format(test_mse))
print('The model had a MSE on the (train) set of {0}'.format(train_mse))
mlflow.log_metric("test_mse", test_mse)
mlflow.log_metric("train_mse", train_mse)
mlflow.spark.log_model(als_model, "als-model")
示例15: test_cv_lasso_with_mllib_featurization
# 需要导入模块: from pyspark import ml [as 别名]
# 或者: from pyspark.ml import Pipeline [as 别名]
def test_cv_lasso_with_mllib_featurization(self):
data = [('hi there', 0.0),
('what is up', 1.0),
('huh', 1.0),
('now is the time', 5.0),
('for what', 0.0),
('the spark was there', 5.0),
('and so', 3.0),
('were many socks', 0.0),
('really', 1.0),
('too cool', 2.0)]
data = self.sql.createDataFrame(data, ["review", "rating"])
# Feature extraction using MLlib
tokenizer = Tokenizer(inputCol="review", outputCol="words")
hashingTF = HashingTF(inputCol="words", outputCol="features", numFeatures=20000)
pipeline = Pipeline(stages=[tokenizer, hashingTF])
data = pipeline.fit(data).transform(data)
df = self.converter.toPandas(data.select(data.features.alias("review"), "rating"))
pipeline = SKL_Pipeline([
('lasso', SKL_Lasso())
])
parameters = {
'lasso__alpha': (0.001, 0.005, 0.01)
}
grid_search = GridSearchCV(self.sc, pipeline, parameters)
skl_gs = grid_search.fit(df.review.values, df.rating.values)
assert len(skl_gs.cv_results_['params']) == len(parameters['lasso__alpha'])