本文整理汇总了Python中pyspark.conf.SparkConf方法的典型用法代码示例。如果您正苦于以下问题:Python conf.SparkConf方法的具体用法?Python conf.SparkConf怎么用?Python conf.SparkConf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyspark.conf
的用法示例。
在下文中一共展示了conf.SparkConf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_shell_session
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def _create_shell_session():
"""
Initialize a SparkSession for a pyspark shell session. This is called from shell.py
to make error handling simpler without needing to declare local variables in that
script, which would expose those to users.
"""
import py4j
from pyspark.conf import SparkConf
from pyspark.context import SparkContext
try:
# Try to access HiveConf, it will raise exception if Hive is not added
conf = SparkConf()
if conf.get('spark.sql.catalogImplementation', 'hive').lower() == 'hive':
SparkContext._jvm.org.apache.hadoop.hive.conf.HiveConf()
return SparkSession.builder\
.enableHiveSupport()\
.getOrCreate()
else:
return SparkSession.builder.getOrCreate()
except (py4j.protocol.Py4JError, TypeError):
if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive':
warnings.warn("Fall back to non-hive support because failing to access HiveConf, "
"please make sure you build spark with hive")
return SparkSession.builder.getOrCreate()
示例2: test_user_configuration
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def test_user_configuration(self):
"""Make sure user configuration is respected (SPARK-19307)"""
script = self.createTempFile("test.py", """
|from pyspark import SparkConf, SparkContext
|
|conf = SparkConf().set("spark.test_config", "1")
|sc = SparkContext(conf = conf)
|try:
| if sc._conf.get("spark.test_config") != "1":
| raise Exception("Cannot find spark.test_config in SparkContext's conf.")
|finally:
| sc.stop()
""")
proc = subprocess.Popen(
self.sparkSubmit + ["--master", "local", script],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
out, err = proc.communicate()
self.assertEqual(0, proc.returncode, msg="Process failed with error:\n {0}".format(out))
示例3: main
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def main():
if len(sys.argv) != 3:
print >> sys.stderr, "Usage: example <keyspace_name> <column_family_name>"
sys.exit(-1)
keyspace_name = sys.argv[1]
column_family_name = sys.argv[2]
# Valid config options here https://github.com/datastax/spark-cassandra-connector/blob/master/doc/1_connecting.md
conf = SparkConf().set("spark.cassandra.connection.host", "127.0.0.1")
sc = SparkContext(appName="Spark + Cassandra Example",
conf=conf)
# import time; time.sleep(30)
java_import(sc._gateway.jvm, "com.datastax.spark.connector.CassandraJavaUtil")
print sc._jvm.CassandraJavaUtil
users = (
["Mike", "Sukmanowsky"],
["Andrew", "Montalenti"],
["Keith", "Bourgoin"],
)
rdd = sc.parallelize(users)
print rdd.collect()
示例4: config
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def config(self, key=None, value=None, conf=None):
"""Sets a config option. Options set using this method are automatically propagated to
both :class:`SparkConf` and :class:`SparkSession`'s own configuration.
For an existing SparkConf, use `conf` parameter.
>>> from pyspark.conf import SparkConf
>>> SparkSession.builder.config(conf=SparkConf())
<pyspark.sql.session...
For a (key, value) pair, you can omit parameter names.
>>> SparkSession.builder.config("spark.some.config.option", "some-value")
<pyspark.sql.session...
:param key: a key name string for configuration property
:param value: a value for configuration property
:param conf: an instance of :class:`SparkConf`
"""
with self._lock:
if conf is None:
self._options[key] = str(value)
else:
for (k, v) in conf.getAll():
self._options[k] = v
return self
示例5: init_spark_session
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def init_spark_session(self, application_name, spark_master=None):
"""Setup a spark session.
:param spark_master: A master parameter used by spark session builder.
Use default value (None) to use system
environment configured spark cluster.
Use 'local[*]' to run on a local box.
:return: spark_session: A spark session
"""
eva_spark_conf = SparkConf()
eva_spark_conf.set('spark.logConf', 'true')
session_builder = SparkSession \
.builder \
.appName(application_name) \
.config(conf=eva_spark_conf)
if spark_master:
session_builder.master(spark_master)
# Gets an existing SparkSession or,
# if there is no existing one, creates a new one based
# on the options set in this builder.
self._session = session_builder.getOrCreate()
# Configure logging
log4j_level = LoggingManager().getLog4JLevel()
spark_context = self._session.sparkContext
spark_context.setLogLevel(log4j_level)
示例6: test_external_sort_in_rdd
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def test_external_sort_in_rdd(self):
conf = SparkConf().set("spark.python.worker.memory", "1m")
sc = SparkContext(conf=conf)
l = list(range(10240))
random.shuffle(l)
rdd = sc.parallelize(l, 4)
self.assertEqual(sorted(l), rdd.sortBy(lambda x: x).collect())
sc.stop()
示例7: conf
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def conf(cls):
"""
Override this in subclasses to supply a more specific conf
"""
return SparkConf()
示例8: setUp
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def setUp(self):
self._old_sys_path = list(sys.path)
class_name = self.__class__.__name__
conf = SparkConf().set("spark.python.profile", "true")
self.sc = SparkContext('local[4]', class_name, conf=conf)
示例9: test_profiler_disabled
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def test_profiler_disabled(self):
sc = SparkContext(conf=SparkConf().set("spark.python.profile", "false"))
try:
self.assertRaisesRegexp(
RuntimeError,
"'spark.python.profile' configuration must be set",
lambda: sc.show_profiles())
self.assertRaisesRegexp(
RuntimeError,
"'spark.python.profile' configuration must be set",
lambda: sc.dump_profiles("/tmp/abc"))
finally:
sc.stop()
示例10: getOrCreate
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def getOrCreate(cls, conf=None):
"""
Get or instantiate a SparkContext and register it as a singleton object.
:param conf: SparkConf (optional)
"""
with SparkContext._lock:
if SparkContext._active_spark_context is None:
SparkContext(conf=conf or SparkConf())
return SparkContext._active_spark_context
示例11: getConf
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def getConf(self):
conf = SparkConf()
conf.setAll(self._conf.getAll())
return conf
示例12: _test_multiple_broadcasts
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def _test_multiple_broadcasts(self, *extra_confs):
"""
Test broadcast variables make it OK to the executors. Tests multiple broadcast variables,
and also multiple jobs.
"""
conf = SparkConf()
for key, value in extra_confs:
conf.set(key, value)
conf.setMaster("local-cluster[2,1,1024]")
self.sc = SparkContext(conf=conf)
self._test_encryption_helper([5])
self._test_encryption_helper([5, 10, 20])
示例13: setUpClass
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def setUpClass(cls):
gateway = launch_gateway(SparkConf())
cls._jvm = gateway.jvm
cls.longMessage = True
random.seed(42)
示例14: registerFunction
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def registerFunction(self, ssc, jsession, function_name, params):
jvm = self.gateway.jvm
# If we don't have a reference to a running SparkContext
# Get the SparkContext from the provided SparkSession.
if not self._sc:
master = ssc.master()
jsc = jvm.org.apache.spark.api.java.JavaSparkContext(ssc)
jsparkConf = ssc.conf()
sparkConf = SparkConf(_jconf=jsparkConf)
self._sc = SparkContext(
master=master,
conf=sparkConf,
gateway=self.gateway,
jsc=jsc)
self._session = SparkSession.builder.getOrCreate()
if function_name in functions_info:
function_info = functions_info[function_name]
if params:
evaledParams = ast.literal_eval(params)
else:
evaledParams = []
func = function_info.func(*evaledParams)
ret_type = function_info.returnType()
self._count = self._count + 1
registration_name = function_name + str(self._count)
udf = UserDefinedFunction(func, ret_type, registration_name)
# Used to allow non-default (e.g. Arrow) UDFS
udf.evalType = function_info.evalType()
judf = udf._judf
return judf
else:
print("Could not find function")
# We do this rather than raising an exception since Py4J debugging
# is rough and we can check it.
return None
示例15: spark_jvm_imports
# 需要导入模块: from pyspark import conf [as 别名]
# 或者: from pyspark.conf import SparkConf [as 别名]
def spark_jvm_imports(jvm):
# Import the classes used by PySpark
java_import(jvm, "org.apache.spark.SparkConf")
java_import(jvm, "org.apache.spark.api.java.*")
java_import(jvm, "org.apache.spark.api.python.*")
java_import(jvm, "org.apache.spark.ml.python.*")
java_import(jvm, "org.apache.spark.mllib.api.python.*")
# TODO(davies): move into sql
java_import(jvm, "org.apache.spark.sql.*")
java_import(jvm, "org.apache.spark.sql.hive.*")
java_import(jvm, "scala.Tuple2")