本文整理汇总了Python中pyspark.SparkContext._active_spark_context方法的典型用法代码示例。如果您正苦于以下问题:Python SparkContext._active_spark_context方法的具体用法?Python SparkContext._active_spark_context怎么用?Python SparkContext._active_spark_context使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyspark.SparkContext
的用法示例。
在下文中一共展示了SparkContext._active_spark_context方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: from_vocabulary
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def from_vocabulary(cls, vocabulary, inputCol, outputCol=None, minTF=None, binary=None):
"""
Construct the model directly from a vocabulary list of strings,
requires an active SparkContext.
"""
sc = SparkContext._active_spark_context
java_class = sc._gateway.jvm.java.lang.String
jvocab = CountVectorizerModel._new_java_array(vocabulary, java_class)
model = CountVectorizerModel._create_from_java_class(
"org.apache.spark.ml.feature.CountVectorizerModel", jvocab)
model.setInputCol(inputCol)
if outputCol is not None:
model.setOutputCol(outputCol)
if minTF is not None:
model.setMinTF(minTF)
if binary is not None:
model.setBinary(binary)
model._set(vocabSize=len(vocabulary))
return model
示例2: from_labels
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def from_labels(cls, labels, inputCol, outputCol=None, handleInvalid=None):
"""
Construct the model directly from an array of label strings,
requires an active SparkContext.
"""
sc = SparkContext._active_spark_context
java_class = sc._gateway.jvm.java.lang.String
jlabels = StringIndexerModel._new_java_array(labels, java_class)
model = StringIndexerModel._create_from_java_class(
"org.apache.spark.ml.feature.StringIndexerModel", jlabels)
model.setInputCol(inputCol)
if outputCol is not None:
model.setOutputCol(outputCol)
if handleInvalid is not None:
model.setHandleInvalid(handleInvalid)
return model
示例3: _new_java_array
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def _new_java_array(pylist, java_class):
"""
Create a Java array of given java_class type. Useful for
calling a method with a Scala Array from Python with Py4J.
:param pylist:
Python list to convert to a Java Array.
:param java_class:
Java class to specify the type of Array. Should be in the
form of sc._gateway.jvm.* (sc is a valid Spark Context).
:return:
Java Array of converted pylist.
Example primitive Java classes:
- basestring -> sc._gateway.jvm.java.lang.String
- int -> sc._gateway.jvm.java.lang.Integer
- float -> sc._gateway.jvm.java.lang.Double
- bool -> sc._gateway.jvm.java.lang.Boolean
"""
sc = SparkContext._active_spark_context
java_array = sc._gateway.new_array(java_class, len(pylist))
for i in xrange(len(pylist)):
java_array[i] = pylist[i]
return java_array
示例4: _transfer_params_to_java
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def _transfer_params_to_java(self):
"""
Transforms the embedded params to the companion Java object.
"""
pair_defaults = []
for param in self.params:
if self.isSet(param):
pair = self._make_java_param_pair(param, self._paramMap[param])
self._java_obj.set(pair)
if self.hasDefault(param):
pair = self._make_java_param_pair(param, self._defaultParamMap[param])
pair_defaults.append(pair)
if len(pair_defaults) > 0:
sc = SparkContext._active_spark_context
pair_defaults_seq = sc._jvm.PythonUtils.toSeq(pair_defaults)
self._java_obj.setDefault(pair_defaults_seq)
示例5: _transfer_params_from_java
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def _transfer_params_from_java(self):
"""
Transforms the embedded params from the companion Java object.
"""
sc = SparkContext._active_spark_context
for param in self.params:
if self._java_obj.hasParam(param.name):
java_param = self._java_obj.getParam(param.name)
# SPARK-14931: Only check set params back to avoid default params mismatch.
if self._java_obj.isSet(java_param):
value = _java2py(sc, self._java_obj.getOrDefault(java_param))
self._set(**{param.name: value})
# SPARK-10931: Temporary fix for params that have a default in Java
if self._java_obj.hasDefault(java_param) and not self.isDefined(param):
value = _java2py(sc, self._java_obj.getDefault(java_param)).get()
self._setDefault(**{param.name: value})
示例6: approx_count_distinct
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def approx_count_distinct(col, rsd=None):
"""Aggregate function: returns a new :class:`Column` for approximate distinct count of
column `col`.
:param rsd: maximum estimation error allowed (default = 0.05). For rsd < 0.01, it is more
efficient to use :func:`countDistinct`
>>> df.agg(approx_count_distinct(df.age).alias('distinct_ages')).collect()
[Row(distinct_ages=2)]
"""
sc = SparkContext._active_spark_context
if rsd is None:
jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col))
else:
jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col), rsd)
return Column(jc)
示例7: grouping_id
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def grouping_id(*cols):
"""
Aggregate function: returns the level of grouping, equals to
(grouping(c1) << (n-1)) + (grouping(c2) << (n-2)) + ... + grouping(cn)
.. note:: The list of columns should match with grouping columns exactly, or empty (means all
the grouping columns).
>>> df.cube("name").agg(grouping_id(), sum("age")).orderBy("name").show()
+-----+-------------+--------+
| name|grouping_id()|sum(age)|
+-----+-------------+--------+
| null| 1| 7|
|Alice| 0| 2|
| Bob| 0| 5|
+-----+-------------+--------+
"""
sc = SparkContext._active_spark_context
jc = sc._jvm.functions.grouping_id(_to_seq(sc, cols, _to_java_column))
return Column(jc)
示例8: rand
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def rand(seed=None):
"""Generates a random column with independent and identically distributed (i.i.d.) samples
from U[0.0, 1.0].
.. note:: The function is non-deterministic in general case.
>>> df.withColumn('rand', rand(seed=42) * 3).collect()
[Row(age=2, name=u'Alice', rand=1.1568609015300986),
Row(age=5, name=u'Bob', rand=1.403379671529166)]
"""
sc = SparkContext._active_spark_context
if seed is not None:
jc = sc._jvm.functions.rand(seed)
else:
jc = sc._jvm.functions.rand()
return Column(jc)
示例9: randn
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def randn(seed=None):
"""Generates a column with independent and identically distributed (i.i.d.) samples from
the standard normal distribution.
.. note:: The function is non-deterministic in general case.
>>> df.withColumn('randn', randn(seed=42)).collect()
[Row(age=2, name=u'Alice', randn=-0.7556247885860078),
Row(age=5, name=u'Bob', randn=-0.0861619008451133)]
"""
sc = SparkContext._active_spark_context
if seed is not None:
jc = sc._jvm.functions.randn(seed)
else:
jc = sc._jvm.functions.randn()
return Column(jc)
示例10: when
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def when(condition, value):
"""Evaluates a list of conditions and returns one of multiple possible result expressions.
If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions.
:param condition: a boolean :class:`Column` expression.
:param value: a literal value, or a :class:`Column` expression.
>>> df.select(when(df['age'] == 2, 3).otherwise(4).alias("age")).collect()
[Row(age=3), Row(age=4)]
>>> df.select(when(df.age == 2, df.age + 1).alias("age")).collect()
[Row(age=3), Row(age=None)]
"""
sc = SparkContext._active_spark_context
if not isinstance(condition, Column):
raise TypeError("condition should be a Column")
v = value._jc if isinstance(value, Column) else value
jc = sc._jvm.functions.when(condition._jc, v)
return Column(jc)
示例11: log
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def log(arg1, arg2=None):
"""Returns the first argument-based logarithm of the second argument.
If there is only one argument, then this takes the natural logarithm of the argument.
>>> df.select(log(10.0, df.age).alias('ten')).rdd.map(lambda l: str(l.ten)[:7]).collect()
['0.30102', '0.69897']
>>> df.select(log(df.age).alias('e')).rdd.map(lambda l: str(l.e)[:7]).collect()
['0.69314', '1.60943']
"""
sc = SparkContext._active_spark_context
if arg2 is None:
jc = sc._jvm.functions.log(_to_java_column(arg1))
else:
jc = sc._jvm.functions.log(arg1, _to_java_column(arg2))
return Column(jc)
示例12: ntile
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def ntile(n):
"""
Window function: returns the ntile group id (from 1 to `n` inclusive)
in an ordered window partition. For example, if `n` is 4, the first
quarter of the rows will get value 1, the second quarter will get 2,
the third quarter will get 3, and the last quarter will get 4.
This is equivalent to the NTILE function in SQL.
:param n: an integer
"""
sc = SparkContext._active_spark_context
return Column(sc._jvm.functions.ntile(int(n)))
# ---------------------- Date/Timestamp functions ------------------------------
示例13: months_between
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def months_between(date1, date2, roundOff=True):
"""
Returns number of months between dates date1 and date2.
If date1 is later than date2, then the result is positive.
If date1 and date2 are on the same day of month, or both are the last day of month,
returns an integer (time of day will be ignored).
The result is rounded off to 8 digits unless `roundOff` is set to `False`.
>>> df = spark.createDataFrame([('1997-02-28 10:30:00', '1996-10-30')], ['date1', 'date2'])
>>> df.select(months_between(df.date1, df.date2).alias('months')).collect()
[Row(months=3.94959677)]
>>> df.select(months_between(df.date1, df.date2, False).alias('months')).collect()
[Row(months=3.9495967741935485)]
"""
sc = SparkContext._active_spark_context
return Column(sc._jvm.functions.months_between(
_to_java_column(date1), _to_java_column(date2), roundOff))
示例14: to_date
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def to_date(col, format=None):
"""Converts a :class:`Column` of :class:`pyspark.sql.types.StringType` or
:class:`pyspark.sql.types.TimestampType` into :class:`pyspark.sql.types.DateType`
using the optionally specified format. Specify formats according to
`SimpleDateFormats <http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html>`_.
By default, it follows casting rules to :class:`pyspark.sql.types.DateType` if the format
is omitted (equivalent to ``col.cast("date")``).
>>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
>>> df.select(to_date(df.t).alias('date')).collect()
[Row(date=datetime.date(1997, 2, 28))]
>>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
>>> df.select(to_date(df.t, 'yyyy-MM-dd HH:mm:ss').alias('date')).collect()
[Row(date=datetime.date(1997, 2, 28))]
"""
sc = SparkContext._active_spark_context
if format is None:
jc = sc._jvm.functions.to_date(_to_java_column(col))
else:
jc = sc._jvm.functions.to_date(_to_java_column(col), format)
return Column(jc)
示例15: to_timestamp
# 需要导入模块: from pyspark import SparkContext [as 别名]
# 或者: from pyspark.SparkContext import _active_spark_context [as 别名]
def to_timestamp(col, format=None):
"""Converts a :class:`Column` of :class:`pyspark.sql.types.StringType` or
:class:`pyspark.sql.types.TimestampType` into :class:`pyspark.sql.types.DateType`
using the optionally specified format. Specify formats according to
`SimpleDateFormats <http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html>`_.
By default, it follows casting rules to :class:`pyspark.sql.types.TimestampType` if the format
is omitted (equivalent to ``col.cast("timestamp")``).
>>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
>>> df.select(to_timestamp(df.t).alias('dt')).collect()
[Row(dt=datetime.datetime(1997, 2, 28, 10, 30))]
>>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
>>> df.select(to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss').alias('dt')).collect()
[Row(dt=datetime.datetime(1997, 2, 28, 10, 30))]
"""
sc = SparkContext._active_spark_context
if format is None:
jc = sc._jvm.functions.to_timestamp(_to_java_column(col))
else:
jc = sc._jvm.functions.to_timestamp(_to_java_column(col), format)
return Column(jc)