当前位置: 首页>>代码示例>>Python>>正文


Python pynvml.nvmlDeviceGetUtilizationRates方法代码示例

本文整理汇总了Python中pynvml.nvmlDeviceGetUtilizationRates方法的典型用法代码示例。如果您正苦于以下问题:Python pynvml.nvmlDeviceGetUtilizationRates方法的具体用法?Python pynvml.nvmlDeviceGetUtilizationRates怎么用?Python pynvml.nvmlDeviceGetUtilizationRates使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pynvml的用法示例。


在下文中一共展示了pynvml.nvmlDeviceGetUtilizationRates方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: getFreeId

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def getFreeId():
    import pynvml 

    pynvml.nvmlInit()
    def getFreeRatio(id):
        handle = pynvml.nvmlDeviceGetHandleByIndex(id)
        use = pynvml.nvmlDeviceGetUtilizationRates(handle)
        ratio = 0.5*(float(use.gpu+float(use.memory)))
        return ratio

    deviceCount = pynvml.nvmlDeviceGetCount()
    available = []
    for i in range(deviceCount):
        if getFreeRatio(i)<70:
            available.append(i)
    gpus = ''
    for g in available:
        gpus = gpus+str(g)+','
    gpus = gpus[:-1]
    return gpus 
开发者ID:uci-cbcl,项目名称:DeepLung,代码行数:22,代码来源:utils.py

示例2: gpu_info

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def gpu_info(self):
        # pip install nvidia-ml-py3
        if len(self.gpu_ids) >= 0 and torch.cuda.is_available():
            try:
                import pynvml
                pynvml.nvmlInit()
                self.config_dic['gpu_driver_version'] = pynvml.nvmlSystemGetDriverVersion()
                for gpu_id in self.gpu_ids:
                    handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
                    gpu_id_name = "gpu%s" % gpu_id
                    mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
                    gpu_utilize = pynvml.nvmlDeviceGetUtilizationRates(handle)
                    self.config_dic['%s_device_name' % gpu_id_name] = pynvml.nvmlDeviceGetName(handle)
                    self.config_dic['%s_mem_total' % gpu_id_name] = gpu_mem_total = round(mem_info.total / 1024 ** 3, 2)
                    self.config_dic['%s_mem_used' % gpu_id_name] = gpu_mem_used = round(mem_info.used / 1024 ** 3, 2)
                    # self.config_dic['%s_mem_free' % gpu_id_name] = gpu_mem_free = mem_info.free // 1024 ** 2
                    self.config_dic['%s_mem_percent' % gpu_id_name] = round((gpu_mem_used / gpu_mem_total) * 100, 1)
                    self._set_dict_smooth('%s_utilize_gpu' % gpu_id_name, gpu_utilize.gpu, 0.8)
                    # self.config_dic['%s_utilize_gpu' % gpu_id_name] = gpu_utilize.gpu
                    # self.config_dic['%s_utilize_memory' % gpu_id_name] = gpu_utilize.memory

                pynvml.nvmlShutdown()
            except Exception as e:
                print(e) 
开发者ID:dingguanglei,项目名称:jdit,代码行数:26,代码来源:super.py

示例3: __query_util

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def __query_util(handle):
        """Query information on the utilization of a GPU.

        Arguments:
            handle:
                NVML device handle.

        Returns:
            summaries (:obj:`dict`):
                Dictionary containing the memory values for ['mem_util', 'gpu_util'].
                All values are given as integers  in the range (0, 100).
        """
        # Query information on the GPU utilization.
        util = nvml.nvmlDeviceGetUtilizationRates(handle)

        summaries = dict()
        # Percent of time over the past second during which global (device) memory was being
        # read or written.
        summaries['mem_util'] = util.memory
        # Percent of time over the past second during which one or more kernels was executing
        # on the GPU.
        summaries['gpu_util'] = util.gpu

        return summaries 
开发者ID:mdangschat,项目名称:ctc-asr,代码行数:26,代码来源:hooks.py

示例4: getFreeId

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def getFreeId():
    import pynvml

    pynvml.nvmlInit()

    def getFreeRatio(id):
        handle = pynvml.nvmlDeviceGetHandleByIndex(id)
        use = pynvml.nvmlDeviceGetUtilizationRates(handle)
        ratio = 0.5 * (float(use.gpu + float(use.memory)))
        return ratio

    deviceCount = pynvml.nvmlDeviceGetCount()
    available = []
    for i in range(deviceCount):
        if getFreeRatio(i) < 70:
            available.append(i)
    gpus = ''
    for g in available:
        gpus = gpus + str(g) + ','
    gpus = gpus[:-1]
    return gpus 
开发者ID:HLIG,项目名称:HUAWEIOCR-2019,代码行数:23,代码来源:utils.py

示例5: get_appropriate_cuda

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def get_appropriate_cuda(task_scale='s'):
    if task_scale not in {'s','m','l'}:
        logger.info('task scale wrong!')
        exit(2)
    import pynvml
    pynvml.nvmlInit()
    total_cuda_num = pynvml.nvmlDeviceGetCount()
    for i in range(total_cuda_num):
        logger.info(i)
        handle = pynvml.nvmlDeviceGetHandleByIndex(i)  # 这里的0是GPU id
        memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
        logger.info(i, 'mem:', memInfo.used / memInfo.total, 'util:',utilizationInfo.gpu)
        if memInfo.used / memInfo.total < 0.15 and utilizationInfo.gpu <0.2:
            logger.info(i,memInfo.used / memInfo.total)
            return 'cuda:'+str(i)

    if task_scale=='s':
        max_memory=2000
    elif task_scale=='m':
        max_memory=6000
    else:
        max_memory = 9000

    max_id = -1
    for i in range(total_cuda_num):
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)  # 这里的0是GPU id
        memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
        if max_memory < memInfo.free:
            max_memory = memInfo.free
            max_id = i

    if id == -1:
        logger.info('no appropriate gpu, wait!')
        exit(2)

    return 'cuda:'+str(max_id)

        # if memInfo.used / memInfo.total < 0.5:
        #     return 
开发者ID:fastnlp,项目名称:fastNLP,代码行数:43,代码来源:utils.py

示例6: utilization_for

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def utilization_for(device_handle):
    """Get GPU device consumption in percent
        Percent of time over the past sample period during which one or more kernels was executing on the GPU.
    """
    try:
        return pynvml.nvmlDeviceGetUtilizationRates(device_handle).gpu
    except pynvml.NVMLError:
        return None 
开发者ID:msalvaris,项目名称:gpu_monitor,代码行数:10,代码来源:gpu_interface.py

示例7: mem_utilization_for

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def mem_utilization_for(device_handle):
    """
        Percent of time over the past sample period during which global (device) memory was being read or written.
    """
    try:
        return pynvml.nvmlDeviceGetUtilizationRates(device_handle).memory
    except pynvml.NVMLError:
        return None 
开发者ID:msalvaris,项目名称:gpu_monitor,代码行数:10,代码来源:gpu_interface.py

示例8: query_gpu

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def query_gpu(handle: int) -> Dict:
    memory = pynvml.nvmlDeviceGetMemoryInfo(handle)  # in Bytes
    utilization = pynvml.nvmlDeviceGetUtilizationRates(handle)

    return {
        "gpu_{}_memory_free".format(handle): int(memory.free),
        "gpu_{}_memory_used".format(handle): int(memory.used),
        "gpu_{}_utilization".format(handle): utilization.gpu,
    } 
开发者ID:polyaxon,项目名称:polyaxon,代码行数:11,代码来源:gpu_processor.py

示例9: _monitor

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def _monitor(self):
        pynvml.nvmlInit()
        self._find_gpu()
        current_sample = []
        while not self.should_stop:
            used_cpu = None
            used_cpumem = None
            used_gpu = None
            used_gpumem = None
            
            cpu_process = psutil.Process(self.pid)
            used_cpu = cpu_process.cpu_percent() / psutil.cpu_count() # CPU utilization in %
            used_cpumem = cpu_process.memory_info().rss // (1024*1024) # Memory use in MB

            gpu_processes = pynvml.nvmlDeviceGetComputeRunningProcesses(self.gpu)
            for gpu_process in gpu_processes:
                if gpu_process.pid == self.pid:
                    used_gpumem = gpu_process.usedGpuMemory // (1024*1024) # GPU memory use in MB
                    break

            if self.accounting_enabled:
                try:
                    stats = pynvml.nvmlDeviceGetAccountingStats(self.gpu, self.pid)
                    used_gpu = stats.gpuUtilization
                except pynvml.NVMLError: # NVMLError_NotFound
                    pass

            if not used_gpu:
                util = pynvml.nvmlDeviceGetUtilizationRates(self.gpu)
                used_gpu = util.gpu / len(gpu_processes) # Approximate based on number of processes

            current_sample.append((used_cpu, used_cpumem, used_gpu, used_gpumem))

            time.sleep(self.sampling_rate)

        self.stats.append([round(sum(x) / len(x)) for x in zip(*current_sample)])
        pynvml.nvmlShutdown() 
开发者ID:vlimant,项目名称:mpi_learn,代码行数:39,代码来源:monitor.py

示例10: _crawl_in_system

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def _crawl_in_system(self):
        '''
        nvidia-smi returns following: MEMORY, UTILIZATION, ECC, TEMPERATURE,
        POWER, CLOCK, COMPUTE, PIDS, PERFORMANCE, SUPPORTED_CLOCKS,
        PAGE_RETIREMENT, ACCOUNTING

        currently, following are requested based on dlaas requirements:
            utilization.gpu, utilization.memory,
            memory.total, memory.free, memory.used
        nvidia-smi --query-gpu=utilization.gpu,utilization.memory,\
            memory.total,memory.free,memory.used --format=csv,noheader,nounits
        '''

        if self._init_nvml() == -1:
            return

        self.inspect_arr = exec_dockerps()

        num_gpus = pynvml.nvmlDeviceGetCount()

        for gpuid in range(0, num_gpus):
            gpuhandle = pynvml.nvmlDeviceGetHandleByIndex(gpuid)
            temperature = pynvml.nvmlDeviceGetTemperature(
                gpuhandle, pynvml.NVML_TEMPERATURE_GPU)
            memory = pynvml.nvmlDeviceGetMemoryInfo(gpuhandle)
            mem_total = memory.total / 1024 / 1024
            mem_used = memory.used / 1024 / 1024
            mem_free = memory.free / 1024 / 1024
            power_draw = pynvml.nvmlDeviceGetPowerUsage(gpuhandle) / 1000
            power_limit = pynvml.nvmlDeviceGetEnforcedPowerLimit(
                gpuhandle) / 1000
            util = pynvml.nvmlDeviceGetUtilizationRates(gpuhandle)
            util_gpu = util.gpu
            util_mem = util.memory
            entry = {
                'utilization': {'gpu': util_gpu, 'memory': util_mem},
                'memory': {'total': mem_total, 'free': mem_free,
                           'used': mem_used},
                'temperature': temperature,
                'power': {'draw': power_draw, 'limit': power_limit}
            }
            key = self._get_feature_key(gpuhandle, gpuid)
            if gpuid == num_gpus - 1:
                self._shutdown_nvml()

            yield (key, entry, 'gpu')

        return 
开发者ID:cloudviz,项目名称:agentless-system-crawler,代码行数:50,代码来源:gpu_host_crawler.py

示例11: measure_cpu_gpu_instant_load

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetUtilizationRates [as 别名]
def measure_cpu_gpu_instant_load():
    # Get current cpu gpu load, as
    # load = [rank, cpu_load, nvidia_device_id, gpu_load]
    # result_arr: [load, load, ...]

    if cg_load_backend_ok:
        global gpu_a_load
        global gpu_m_count
        global p_handler

        cpu_load = p_handler.cpu_percent()
        gpu_m_count += 1
        try:
            comm = current_communicator()
            if comm:
                index = comm.local_rank
            elif 'cuda' in str(nn.get_current_context().backend):
                index = 0
            else:
                raise Exception
            handler = pynvml.nvmlDeviceGetHandleByIndex(index)
            gpu_load = [
                [index, pynvml.nvmlDeviceGetUtilizationRates(handler).gpu]]

            if index in gpu_a_load.keys():
                gpu_a_load[index]['name'] = pynvml.nvmlDeviceGetName(
                    handler).decode("utf-8")
                o_load = gpu_a_load[index]['load']
                n_load = gpu_load[0][1]
                gpu_a_load[index]['load'] = (
                    (gpu_m_count - 1) * o_load + n_load) / gpu_m_count
            else:
                gpu_a_load[index] = {
                    'name': pynvml.nvmlDeviceGetName(handler).decode("utf-8"),
                    'load': gpu_load[0][1]
                }

        except Exception:
            gpu_load = [[-1, -1]]

        callback.update_status(
            ('cpu_gpu_load', collect_and_shape_result(cpu_load, gpu_load))) 
开发者ID:sony,项目名称:nnabla,代码行数:44,代码来源:utility.py


注:本文中的pynvml.nvmlDeviceGetUtilizationRates方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。