当前位置: 首页>>代码示例>>Python>>正文


Python pynvml.nvmlDeviceGetMemoryInfo方法代码示例

本文整理汇总了Python中pynvml.nvmlDeviceGetMemoryInfo方法的典型用法代码示例。如果您正苦于以下问题:Python pynvml.nvmlDeviceGetMemoryInfo方法的具体用法?Python pynvml.nvmlDeviceGetMemoryInfo怎么用?Python pynvml.nvmlDeviceGetMemoryInfo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pynvml的用法示例。


在下文中一共展示了pynvml.nvmlDeviceGetMemoryInfo方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: getGPUUsage

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def getGPUUsage():
    try:
        pynvml.nvmlInit()
        count = pynvml.nvmlDeviceGetCount()
        if count == 0:
            return None

        result = {"driver": pynvml.nvmlSystemGetDriverVersion(),
                  "gpu_count": int(count)
                  }
        i = 0
        gpuData = []
        while i<count:
            handle = pynvml.nvmlDeviceGetHandleByIndex(i)
            mem = pynvml.nvmlDeviceGetMemoryInfo(handle)
            gpuData.append({"device_num": i, "name": pynvml.nvmlDeviceGetName(handle), "total": round(float(mem.total)/1000000000, 2), "used": round(float(mem.used)/1000000000, 2)})
            i = i+1

        result["devices"] = jsonpickle.encode(gpuData, unpicklable=False)
    except Exception as e:
        result = {"driver": "No GPU!", "gpu_count": 0, "devices": []}

    return result 
开发者ID:tech-quantum,项目名称:sia-cog,代码行数:25,代码来源:sysinfo.py

示例2: gpu_info

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def gpu_info(self):
        # pip install nvidia-ml-py3
        if len(self.gpu_ids) >= 0 and torch.cuda.is_available():
            try:
                import pynvml
                pynvml.nvmlInit()
                self.config_dic['gpu_driver_version'] = pynvml.nvmlSystemGetDriverVersion()
                for gpu_id in self.gpu_ids:
                    handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
                    gpu_id_name = "gpu%s" % gpu_id
                    mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
                    gpu_utilize = pynvml.nvmlDeviceGetUtilizationRates(handle)
                    self.config_dic['%s_device_name' % gpu_id_name] = pynvml.nvmlDeviceGetName(handle)
                    self.config_dic['%s_mem_total' % gpu_id_name] = gpu_mem_total = round(mem_info.total / 1024 ** 3, 2)
                    self.config_dic['%s_mem_used' % gpu_id_name] = gpu_mem_used = round(mem_info.used / 1024 ** 3, 2)
                    # self.config_dic['%s_mem_free' % gpu_id_name] = gpu_mem_free = mem_info.free // 1024 ** 2
                    self.config_dic['%s_mem_percent' % gpu_id_name] = round((gpu_mem_used / gpu_mem_total) * 100, 1)
                    self._set_dict_smooth('%s_utilize_gpu' % gpu_id_name, gpu_utilize.gpu, 0.8)
                    # self.config_dic['%s_utilize_gpu' % gpu_id_name] = gpu_utilize.gpu
                    # self.config_dic['%s_utilize_memory' % gpu_id_name] = gpu_utilize.memory

                pynvml.nvmlShutdown()
            except Exception as e:
                print(e) 
开发者ID:dingguanglei,项目名称:jdit,代码行数:26,代码来源:super.py

示例3: _get_vram

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def _get_vram(self):
        """ Obtain the total VRAM in Megabytes for each connected GPU.

        Returns
        -------
        list
             List of floats containing the total amount of VRAM in Megabytes for each connected GPU
             as corresponding to the values in :attr:`_handles
        """
        self._initialize()
        if self._device_count == 0:
            vram = list()
        elif self._is_plaidml:
            vram = self._plaid.vram
        elif IS_MACOS:
            vram = [pynvx.cudaGetMemTotal(handle, ignore=True) / (1024 * 1024)
                    for handle in self._handles]
        else:
            vram = [pynvml.nvmlDeviceGetMemoryInfo(handle).total /
                    (1024 * 1024)
                    for handle in self._handles]
        self._log("debug", "GPU VRAM: {}".format(vram))
        return vram 
开发者ID:deepfakes,项目名称:faceswap,代码行数:25,代码来源:gpu_stats.py

示例4: __query_mem

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def __query_mem(handle):
        """
        Query information on the memory of a GPU.

        Arguments:
            handle:
                NVML device handle.

        Returns:
            summaries (:obj:`dict`):
                Dictionary containing the memory values for ['mem_used', 'mem_free', 'mem_total'].
                All values are given in MiB as integers.
        """
        # Query information on the GPUs memory usage.
        info = nvml.nvmlDeviceGetMemoryInfo(handle)

        summaries = dict()
        bytes_mib = 1024.0 ** 2
        summaries['mem_used'] = int(info.used / bytes_mib)
        summaries['mem_free'] = int(info.free / bytes_mib)
        summaries['mem_total'] = int(info.total / bytes_mib)

        return summaries 
开发者ID:mdangschat,项目名称:ctc-asr,代码行数:25,代码来源:hooks.py

示例5: get_appropriate_cuda

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def get_appropriate_cuda(task_scale='s'):
    if task_scale not in {'s','m','l'}:
        logger.info('task scale wrong!')
        exit(2)
    import pynvml
    pynvml.nvmlInit()
    total_cuda_num = pynvml.nvmlDeviceGetCount()
    for i in range(total_cuda_num):
        logger.info(i)
        handle = pynvml.nvmlDeviceGetHandleByIndex(i)  # 这里的0是GPU id
        memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
        logger.info(i, 'mem:', memInfo.used / memInfo.total, 'util:',utilizationInfo.gpu)
        if memInfo.used / memInfo.total < 0.15 and utilizationInfo.gpu <0.2:
            logger.info(i,memInfo.used / memInfo.total)
            return 'cuda:'+str(i)

    if task_scale=='s':
        max_memory=2000
    elif task_scale=='m':
        max_memory=6000
    else:
        max_memory = 9000

    max_id = -1
    for i in range(total_cuda_num):
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)  # 这里的0是GPU id
        memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
        if max_memory < memInfo.free:
            max_memory = memInfo.free
            max_id = i

    if id == -1:
        logger.info('no appropriate gpu, wait!')
        exit(2)

    return 'cuda:'+str(max_id)

        # if memInfo.used / memInfo.total < 0.5:
        #     return 
开发者ID:fastnlp,项目名称:fastNLP,代码行数:43,代码来源:utils.py

示例6: mem_used_for

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def mem_used_for(device_handle):
    """Get GPU device memory consumption in percent"""
    try:
        return pynvml.nvmlDeviceGetMemoryInfo(device_handle).used
    except pynvml.NVMLError:
        return None 
开发者ID:msalvaris,项目名称:gpu_monitor,代码行数:8,代码来源:gpu_interface.py

示例7: mem_used_percent_for

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def mem_used_percent_for(device_handle):
    """Get GPU device memory consumption in percent"""
    try:
        memory_info = pynvml.nvmlDeviceGetMemoryInfo(device_handle)
        return memory_info.used * 100.0 / memory_info.total
    except pynvml.NVMLError:
        return None 
开发者ID:msalvaris,项目名称:gpu_monitor,代码行数:9,代码来源:gpu_interface.py

示例8: _get_free_vram

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def _get_free_vram(self):
        """ Obtain the amount of VRAM that is available, in Megabytes, for each connected GPU.

        Returns
        -------
        list
             List of floats containing the amount of VRAM available, in Megabytes, for each
             connected GPU as corresponding to the values in :attr:`_handles

        Notes
        -----
        There is no useful way to get free VRAM on PlaidML. OpenCL loads and unloads VRAM as
        required, so this returns the total memory available per card for AMD cards, which us
        not particularly useful.

        """
        self._initialize()
        if self._is_plaidml:
            vram = self._plaid.vram
        elif IS_MACOS:
            vram = [pynvx.cudaGetMemFree(handle, ignore=True) / (1024 * 1024)
                    for handle in self._handles]
        else:
            vram = [pynvml.nvmlDeviceGetMemoryInfo(handle).free / (1024 * 1024)
                    for handle in self._handles]
        self._shutdown()
        self._log("debug", "GPU VRAM free: {}".format(vram))
        return vram 
开发者ID:deepfakes,项目名称:faceswap,代码行数:30,代码来源:gpu_stats.py

示例9: query_gpu

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def query_gpu(handle: int) -> Dict:
    memory = pynvml.nvmlDeviceGetMemoryInfo(handle)  # in Bytes
    utilization = pynvml.nvmlDeviceGetUtilizationRates(handle)

    return {
        "gpu_{}_memory_free".format(handle): int(memory.free),
        "gpu_{}_memory_used".format(handle): int(memory.used),
        "gpu_{}_utilization".format(handle): utilization.gpu,
    } 
开发者ID:polyaxon,项目名称:polyaxon,代码行数:11,代码来源:gpu_processor.py

示例10: _crawl_in_system

# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 别名]
def _crawl_in_system(self):
        '''
        nvidia-smi returns following: MEMORY, UTILIZATION, ECC, TEMPERATURE,
        POWER, CLOCK, COMPUTE, PIDS, PERFORMANCE, SUPPORTED_CLOCKS,
        PAGE_RETIREMENT, ACCOUNTING

        currently, following are requested based on dlaas requirements:
            utilization.gpu, utilization.memory,
            memory.total, memory.free, memory.used
        nvidia-smi --query-gpu=utilization.gpu,utilization.memory,\
            memory.total,memory.free,memory.used --format=csv,noheader,nounits
        '''

        if self._init_nvml() == -1:
            return

        self.inspect_arr = exec_dockerps()

        num_gpus = pynvml.nvmlDeviceGetCount()

        for gpuid in range(0, num_gpus):
            gpuhandle = pynvml.nvmlDeviceGetHandleByIndex(gpuid)
            temperature = pynvml.nvmlDeviceGetTemperature(
                gpuhandle, pynvml.NVML_TEMPERATURE_GPU)
            memory = pynvml.nvmlDeviceGetMemoryInfo(gpuhandle)
            mem_total = memory.total / 1024 / 1024
            mem_used = memory.used / 1024 / 1024
            mem_free = memory.free / 1024 / 1024
            power_draw = pynvml.nvmlDeviceGetPowerUsage(gpuhandle) / 1000
            power_limit = pynvml.nvmlDeviceGetEnforcedPowerLimit(
                gpuhandle) / 1000
            util = pynvml.nvmlDeviceGetUtilizationRates(gpuhandle)
            util_gpu = util.gpu
            util_mem = util.memory
            entry = {
                'utilization': {'gpu': util_gpu, 'memory': util_mem},
                'memory': {'total': mem_total, 'free': mem_free,
                           'used': mem_used},
                'temperature': temperature,
                'power': {'draw': power_draw, 'limit': power_limit}
            }
            key = self._get_feature_key(gpuhandle, gpuid)
            if gpuid == num_gpus - 1:
                self._shutdown_nvml()

            yield (key, entry, 'gpu')

        return 
开发者ID:cloudviz,项目名称:agentless-system-crawler,代码行数:50,代码来源:gpu_host_crawler.py


注:本文中的pynvml.nvmlDeviceGetMemoryInfo方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。