本文整理汇总了Python中pynvml.NVMLError方法的典型用法代码示例。如果您正苦于以下问题:Python pynvml.NVMLError方法的具体用法?Python pynvml.NVMLError怎么用?Python pynvml.NVMLError使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pynvml
的用法示例。
在下文中一共展示了pynvml.NVMLError方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_driver
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def _get_driver(self):
""" Obtain and return the installed driver version for the system's GPUs.
Returns
-------
str
The currently installed GPU driver version
"""
if self._is_plaidml:
driver = self._plaid.drivers
elif IS_MACOS:
driver = pynvx.cudaSystemGetDriverVersion(ignore=True)
else:
try:
driver = pynvml.nvmlSystemGetDriverVersion().decode("utf-8")
except pynvml.NVMLError:
driver = "No Nvidia driver found"
self._log("debug", "GPU Driver: {}".format(driver))
return driver
示例2: _init_nvml
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def _init_nvml(self):
if self._load_nvidia_lib() == -1:
return -1
try:
global pynvml
import pip
pip.main(['install', '--quiet', 'nvidia-ml-py'])
import pynvml as pynvml
pynvml.nvmlInit()
return 0
except pynvml.NVMLError, err:
logger.debug('Failed to initialize NVML: ', err)
return -1
示例3: _shutdown_nvml
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def _shutdown_nvml(self):
try:
pynvml.nvmlShutdown()
except pynvml.NVMLError, err:
logger.debug('Failed to shutdown NVML: ', err)
示例4: _get_container_id
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def _get_container_id(self, gpuhandle):
cont_ids = []
pids = []
try:
proc_objs = pynvml.nvmlDeviceGetComputeRunningProcesses(gpuhandle)
if not proc_objs:
return ['NA.NA']
for proc_obj in proc_objs:
pids.append(proc_obj.pid)
for pid in pids:
cont_ids.append(self._get_containerid_from_pid(pid))
return cont_ids
except pynvml.NVMLError, err:
logger.debug('Failed to get pid on gpu: ', err)
示例5: __exit__
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def __exit__(self, exception_type, exception_value, traceback):
# Do nothing if the exception is not from pynvml or there is no exception
if traceback is None:
return False
if not issubclass(exception_type, pynvml.NVMLError):
return False
# Suppress pynvml exceptions so we can continue
if self.name in NvmlCall.previously_printed_errors:
return True
NvmlCall.previously_printed_errors.add(self.name)
self.log.warning("Unable to execute NVML function: %s: %s", self.name, exception_value)
return True
示例6: mem_used_for
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def mem_used_for(device_handle):
"""Get GPU device memory consumption in percent"""
try:
return pynvml.nvmlDeviceGetMemoryInfo(device_handle).used
except pynvml.NVMLError:
return None
示例7: mem_used_percent_for
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def mem_used_percent_for(device_handle):
"""Get GPU device memory consumption in percent"""
try:
memory_info = pynvml.nvmlDeviceGetMemoryInfo(device_handle)
return memory_info.used * 100.0 / memory_info.total
except pynvml.NVMLError:
return None
示例8: utilization_for
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def utilization_for(device_handle):
"""Get GPU device consumption in percent
Percent of time over the past sample period during which one or more kernels was executing on the GPU.
"""
try:
return pynvml.nvmlDeviceGetUtilizationRates(device_handle).gpu
except pynvml.NVMLError:
return None
示例9: mem_utilization_for
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def mem_utilization_for(device_handle):
"""
Percent of time over the past sample period during which global (device) memory was being read or written.
"""
try:
return pynvml.nvmlDeviceGetUtilizationRates(device_handle).memory
except pynvml.NVMLError:
return None
示例10: power_for
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def power_for(device_handle):
try:
return pynvml.nvmlDeviceGetPowerUsage(device_handle)
except pynvml.NVMLError:
return None
示例11: _get_device_count
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def _get_device_count(self):
""" Detect the number of GPUs attached to the system and allocate to
:attr:`_device_count`. """
if self._is_plaidml:
self._device_count = self._plaid.device_count
elif IS_MACOS:
self._device_count = pynvx.cudaDeviceGetCount(ignore=True)
else:
try:
self._device_count = pynvml.nvmlDeviceGetCount()
except pynvml.NVMLError:
self._device_count = 0
self._log("debug", "GPU Device count: {}".format(self._device_count))
示例12: can_log_gpu_resources
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def can_log_gpu_resources():
if pynvml is None:
return False
try:
pynvml.nvmlInit()
return True
except pynvml.NVMLError:
return False
示例13: get_gpu_metrics
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def get_gpu_metrics() -> List:
try:
pynvml.nvmlInit()
device_count = pynvml.nvmlDeviceGetCount()
results = []
for i in range(device_count):
handle = pynvml.nvmlDeviceGetHandleByIndex(i)
results += metrics_dict_to_list(query_gpu(handle))
return results
except pynvml.NVMLError:
logger.debug("Failed to collect gpu resources", exc_info=True)
return []
示例14: _monitor
# 需要导入模块: import pynvml [as 别名]
# 或者: from pynvml import NVMLError [as 别名]
def _monitor(self):
pynvml.nvmlInit()
self._find_gpu()
current_sample = []
while not self.should_stop:
used_cpu = None
used_cpumem = None
used_gpu = None
used_gpumem = None
cpu_process = psutil.Process(self.pid)
used_cpu = cpu_process.cpu_percent() / psutil.cpu_count() # CPU utilization in %
used_cpumem = cpu_process.memory_info().rss // (1024*1024) # Memory use in MB
gpu_processes = pynvml.nvmlDeviceGetComputeRunningProcesses(self.gpu)
for gpu_process in gpu_processes:
if gpu_process.pid == self.pid:
used_gpumem = gpu_process.usedGpuMemory // (1024*1024) # GPU memory use in MB
break
if self.accounting_enabled:
try:
stats = pynvml.nvmlDeviceGetAccountingStats(self.gpu, self.pid)
used_gpu = stats.gpuUtilization
except pynvml.NVMLError: # NVMLError_NotFound
pass
if not used_gpu:
util = pynvml.nvmlDeviceGetUtilizationRates(self.gpu)
used_gpu = util.gpu / len(gpu_processes) # Approximate based on number of processes
current_sample.append((used_cpu, used_cpumem, used_gpu, used_gpumem))
time.sleep(self.sampling_rate)
self.stats.append([round(sum(x) / len(x)) for x in zip(*current_sample)])
pynvml.nvmlShutdown()