本文整理汇总了Python中pymc3.sample方法的典型用法代码示例。如果您正苦于以下问题:Python pymc3.sample方法的具体用法?Python pymc3.sample怎么用?Python pymc3.sample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymc3
的用法示例。
在下文中一共展示了pymc3.sample方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: model
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def model(profiles, comparisons, selections, sample=2500, alpha_prior_std=10):
all_attributes = pd.get_dummies(profiles).columns
profiles_dummies = pd.get_dummies(profiles, drop_first=True)
choices = pd.concat({profile: profiles_dummies.loc[comparisons[profile]].reset_index(drop=True) for profile in comparisons.columns}, axis=1)
respondants = selections.columns
n_attributes_in_model = profiles_dummies.shape[1]
n_participants = selections.shape[1]
with pm.Model():
# https://www.sawtoothsoftware.com/download/ssiweb/CBCHB_Manual.pdf
# need to include the covariance matrix as a parent of `partsworth`
alpha = pm.Normal('alpha', 0, sd=alpha_prior_std, shape=n_attributes_in_model, testval=np.random.randn(n_attributes_in_model))
partsworth = pm.MvNormal("partsworth", alpha, tau=np.eye(n_attributes_in_model), shape=(n_participants, n_attributes_in_model))
cs = [_create_observation_variable(selection, choices, partsworth[i, :]) for i, (_, selection) in enumerate(selections.iteritems())]
trace = pm.sample(sample)
return transform_trace_to_individual_summary_statistics(trace, respondants, profiles_dummies.columns, all_attributes)
示例2: fit
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def fit(self, X, Y, n_samples=10000, tune_steps=1000, n_jobs=4):
with pm.Model() as self.model:
# Priors
std = pm.Uniform("std", 0, self.sps, testval=X.std())
beta = pm.StudentT("beta", mu=0, lam=self.sps, nu=self.nu)
alpha = pm.StudentT("alpha", mu=0, lam=self.sps, nu=self.nu, testval=Y.mean())
# Deterministic model
mean = pm.Deterministic("mean", alpha + beta * X)
# Posterior distribution
obs = pm.Normal("obs", mu=mean, sd=std, observed=Y)
## Run MCMC
# Find search start value with maximum a posterior estimation
start = pm.find_MAP()
# sample posterior distribution for latent variables
trace = pm.sample(n_samples, njobs=n_jobs, tune=tune_steps, start=start)
# Recover posterior samples
self.burned_trace = trace[int(n_samples / 2):]
示例3: __init__
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def __init__(self, **kwargs):
"""Create an instance of the BayesianLeastSquaresImputer class.
The class requires multiple arguments necessary to create priors for
a bayesian linear regression equation. The regression is:
alpha + beta * X + epsilson. Because paramaters are treated as
random variables, we must specify their distributions, including
the parameters of those distributions. In thie init method we also
include arguments used to sample the posterior distributions.
Args:
**kwargs: default keyword arguments used for bayesian analysis.
Note - kwargs popped for default arguments defined below.
Rest of kwargs passed as params to sampling (see pymc3).
am (float, Optional): mean of alpha prior. Default 0.
asd (float, Optional): std. deviation of alpha prior. Default 10.
bm (float, Optional): mean of beta priors. Default 0.
bsd (float, Optional): std. deviation of beta priors. Default 10.
sig (float, Optional): parameter of sigma prior. Default 1.
sample (int, Optional): number of posterior samples per chain.
Default = 1000. More samples, longer to run, but better
approximation of the posterior & chance of convergence.
tune (int, Optional): parameter for tuning. Draws done in addition
to sample. Default = 1000.
init (str, Optional): MCMC algo to use for posterior sampling.
Default = 'auto'. See pymc3 docs for more info on choices.
fill_value (str, Optional): How to draw from the posterior to
create imputations. Default is None. 'random' and 'mean'
supported for explicit options.
"""
self.am = kwargs.pop("am", 0)
self.asd = kwargs.pop("asd", 10)
self.bm = kwargs.pop("bm", 0)
self.bsd = kwargs.pop("bsd", 10)
self.sig = kwargs.pop("sig", 1)
self.sample = kwargs.pop("sample", 1000)
self.tune = kwargs.pop("tune", 1000)
self.init = kwargs.pop("init", "auto")
self.fill_value = kwargs.pop("fill_value", None)
self.sample_kwargs = kwargs
示例4: main
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def main():
#load data
returns = data.get_data_google('SPY', start='2008-5-1', end='2009-12-1')['Close'].pct_change()
returns.plot()
plt.ylabel('daily returns in %');
with pm.Model() as sp500_model:
nu = pm.Exponential('nu', 1./10, testval=5.0)
sigma = pm.Exponential('sigma', 1./0.02, testval=0.1)
s = pm.GaussianRandomWalk('s', sigma**-2, shape=len(returns))
r = pm.StudentT('r', nu, lam=pm.math.exp(-2*s), observed=returns)
with sp500_model:
trace = pm.sample(2000)
pm.traceplot(trace, [nu, sigma]);
plt.show()
plt.figure()
returns.plot()
plt.plot(returns.index, np.exp(trace['s',::5].T), 'r', alpha=.03)
plt.legend(['S&P500', 'stochastic volatility process'])
plt.show()
示例5: show_posteriors
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def show_posteriors(self, kde=True):
if hasattr(self, 'burned_trace'):
pm.plots.traceplot(trace=self.burned_trace, varnames=["std", "beta", "alpha"])
pm.plot_posterior(trace=self.burned_trace, varnames=["std", "beta", "alpha"], kde_plot=kde)
pm.plots.autocorrplot(trace=self.burned_trace, varnames=["std", "beta", "alpha"])
else:
print("You must sample from the posteriors first.")
示例6: fit
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def fit(self, X, y):
"""
Fits a Gaussian Process regressor using MCMC.
Parameters
----------
X: np.ndarray, shape=(nsamples, nfeatures)
Training instances to fit the GP.
y: np.ndarray, shape=(nsamples,)
Corresponding continuous target values to `X`.
"""
self.X = X
self.n = self.X.shape[0]
self.y = y
self.model = pm.Model()
with self.model as model:
l = pm.Uniform('l', 0, 10)
log_s2_f = pm.Uniform('log_s2_f', lower=-7, upper=5)
s2_f = pm.Deterministic('sigmaf', tt.exp(log_s2_f))
log_s2_n = pm.Uniform('log_s2_n', lower=-7, upper=5)
s2_n = pm.Deterministic('sigman', tt.exp(log_s2_n))
f_cov = s2_f * covariance_equivalence[type(self.covfunc).__name__](1, l)
Sigma = f_cov(self.X) + tt.eye(self.n) * s2_n ** 2
y_obs = pm.MvNormal('y_obs', mu=np.zeros(self.n), cov=Sigma, observed=self.y)
with self.model as model:
if self.step is not None:
self.trace = pm.sample(self.niter, step=self.step())[self.burnin:]
else:
self.trace = pm.sample(self.niter, init=self.init)[self.burnin:]
示例7: predict
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def predict(self, Xstar, return_std=False, nsamples=10):
"""
Returns mean and covariances for each posterior sampled Gaussian Process.
Parameters
----------
Xstar: np.ndarray, shape=((nsamples, nfeatures))
Testing instances to predict.
return_std: bool
Whether to return the standard deviation of the posterior process. Otherwise,
it returns the whole covariance matrix of the posterior process.
nsamples:
Number of posterior MCMC samples to consider.
Returns
-------
np.ndarray
Mean of the posterior process for each MCMC sample and `Xstar`.
np.ndarray
Covariance posterior process for each MCMC sample and `Xstar`.
"""
chunk = list(self.trace)
chunk = chunk[::-1][:nsamples]
post_mean = []
post_var = []
for posterior_sample in chunk:
params = self._extractParam(posterior_sample, self.covfunc.parameters)
covfunc = self.covfunc.__class__(**params)
gp = GaussianProcess(covfunc)
gp.fit(self.X, self.y)
m, s = gp.predict(Xstar, return_std=return_std)
post_mean.append(m)
post_var.append(s)
return np.array(post_mean), np.array(post_var)
示例8: fit
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def fit(self, X, y):
"""
Fits a Student-t regressor using MCMC.
Parameters
----------
X: np.ndarray, shape=(nsamples, nfeatures)
Training instances to fit the GP.
y: np.ndarray, shape=(nsamples,)
Corresponding continuous target values to `X`.
"""
self.X = X
self.n = self.X.shape[0]
self.y = y
self.model = pm.Model()
with self.model as model:
l = pm.Uniform('l', 0, 10)
log_s2_f = pm.Uniform('log_s2_f', lower=-7, upper=5)
s2_f = pm.Deterministic('sigmaf', tt.exp(log_s2_f))
log_s2_n = pm.Uniform('log_s2_n', lower=-7, upper=5)
s2_n = pm.Deterministic('sigman', tt.exp(log_s2_n))
f_cov = s2_f * covariance_equivalence[type(self.covfunc).__name__](1, l)
Sigma = f_cov(self.X) + tt.eye(self.n) * s2_n ** 2
y_obs = pm.MvStudentT('y_obs', nu=self.nu, mu=np.zeros(self.n), Sigma=Sigma, observed=self.y)
with self.model as model:
if self.step is not None:
self.trace = pm.sample(self.niter, step=self.step())[self.burnin:]
else:
self.trace = pm.sample(self.niter, init=self.init)[self.burnin:]
示例9: predict
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def predict(self, Xstar, return_std=False, nsamples=10):
"""
Returns mean and covariances for each posterior sampled Student-t Process.
Parameters
----------
Xstar: np.ndarray, shape=((nsamples, nfeatures))
Testing instances to predict.
return_std: bool
Whether to return the standard deviation of the posterior process. Otherwise,
it returns the whole covariance matrix of the posterior process.
nsamples:
Number of posterior MCMC samples to consider.
Returns
-------
np.ndarray
Mean of the posterior process for each MCMC sample and Xstar.
np.ndarray
Covariance posterior process for each MCMC sample and Xstar.
"""
chunk = list(self.trace)
chunk = chunk[::-1][:nsamples]
post_mean = []
post_var = []
for posterior_sample in chunk:
params = self._extractParam(posterior_sample, self.covfunc.parameters)
covfunc = self.covfunc.__class__(**params)
gp = tStudentProcess(covfunc, nu=self.nu + self.n)
gp.fit(self.X, self.y)
m, s = gp.predict(Xstar, return_std=return_std)
post_mean.append(m)
post_var.append(s)
return np.array(post_mean), np.array(post_var)
示例10: sample_prior_predictive
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def sample_prior_predictive(self, X, batch_effects, samples, trace=None):
""" Function to sample from prior predictive distribution """
if len(X.shape)==1:
X = np.expand_dims(X, axis=1)
if len(batch_effects.shape)==1:
batch_effects = np.expand_dims(batch_effects, axis=1)
self.batch_effects_num = batch_effects.shape[1]
self.batch_effects_size = []
for i in range(self.batch_effects_num):
self.batch_effects_size.append(len(np.unique(batch_effects[:,i])))
y = np.zeros([X.shape[0],1])
if self.model_type == 'linear':
with hbr(X, y, batch_effects, self.batch_effects_size, self.configs,
trace):
ppc = pm.sample_prior_predictive(samples=samples)
elif self.model_type == 'polynomial':
X = create_poly_basis(X, self.configs['order'])
with hbr(X, y, batch_effects, self.batch_effects_size, self.configs,
trace):
ppc = pm.sample_prior_predictive(samples=samples)
elif self.model_type == 'bspline':
self.bsp = bspline_fit(X, self.configs['order'], self.configs['nknots'])
X = bspline_transform(X, self.bsp)
with hbr(X, y, batch_effects, self.batch_effects_size, self.configs,
trace):
ppc = pm.sample_prior_predictive(samples=samples)
elif self.model_type == 'nn':
with nn_hbr(X, y, batch_effects, self.batch_effects_size, self.configs,
trace):
ppc = pm.sample_prior_predictive(samples=samples)
return ppc
示例11: _pyro_noncentered_model
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def _pyro_noncentered_model(J, sigma, y=None):
import pyro
import pyro.distributions as dist
mu = pyro.sample("mu", dist.Normal(0, 5))
tau = pyro.sample("tau", dist.HalfCauchy(5))
with pyro.plate("J", J):
eta = pyro.sample("eta", dist.Normal(0, 1))
theta = mu + tau * eta
return pyro.sample("obs", dist.Normal(theta, sigma), obs=y)
示例12: _numpyro_noncentered_model
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def _numpyro_noncentered_model(J, sigma, y=None):
import numpyro
import numpyro.distributions as dist
mu = numpyro.sample("mu", dist.Normal(0, 5))
tau = numpyro.sample("tau", dist.HalfCauchy(5))
with numpyro.plate("J", J):
eta = numpyro.sample("eta", dist.Normal(0, 1))
theta = mu + tau * eta
return numpyro.sample("obs", dist.Normal(theta, sigma), obs=y)
示例13: pymc3_noncentered_schools
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def pymc3_noncentered_schools(data, draws, chains):
"""Non-centered eight schools implementation for pymc3."""
import pymc3 as pm
with pm.Model() as model:
mu = pm.Normal("mu", mu=0, sd=5)
tau = pm.HalfCauchy("tau", beta=5)
eta = pm.Normal("eta", mu=0, sd=1, shape=data["J"])
theta = pm.Deterministic("theta", mu + tau * eta)
pm.Normal("obs", mu=theta, sd=data["sigma"], observed=data["y"])
trace = pm.sample(draws, chains=chains)
return model, trace
示例14: sample_color
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def sample_color(image, samples=5000, tune=1000, nchains=4):
"""Run MCMC on a color image. EXPERIMENTAL!
Parameters
----------
image : numpy.ndarray
Image array from `load_image`. Should have `image.ndims == 2`.
samples : int
Number of samples to draw from the image
tune : int
All chains start at the same spot, so it is good to let them wander
apart a bit before beginning
Returns
-------
pymc3.MultiTrace of samples from the image. Each sample is an (x, y) float
of indices that were sampled, with three variables named 'red',
'green', 'blue'.
"""
with pm.Model():
pm.DensityDist('red', ImageLikelihood(image[:, :, 0]), shape=2)
pm.DensityDist('green', ImageLikelihood(image[:, :, 1]), shape=2)
pm.DensityDist('blue', ImageLikelihood(image[:, :, 2]), shape=2)
trace = pm.sample(samples, chains=nchains, tune=tune, step=pm.Metropolis())
return trace
示例15: sample
# 需要导入模块: import pymc3 [as 别名]
# 或者: from pymc3 import sample [as 别名]
def sample(
self, n_samples: int, beta: float = 1.):
problem = self.problem
log_post_fun = TheanoLogProbability(problem, beta)
trace = self.trace
x0 = None
if self.x0 is not None:
x0 = {x_name: val
for x_name, val in zip(self.problem.x_names, self.x0)}
# create model context
with pm.Model() as model:
# uniform bounds
k = [pm.Uniform(x_name, lower=lb, upper=ub)
for x_name, lb, ub in
zip(problem.get_reduced_vector(problem.x_names),
problem.lb, problem.ub)]
# convert to tensor vector
theta = tt.as_tensor_variable(k)
# use a DensityDist for the log-posterior
pm.DensityDist('log_post', logp=lambda v: log_post_fun(v),
observed={'v': theta})
# step, by default automatically determined by pymc3
step = None
if self.step_function:
step = self.step_function()
# perform the actual sampling
trace = pm.sample(
draws=int(n_samples), trace=trace, start=x0, step=step,
**self.options)
# convert trace to inference data object
data = az.from_pymc3(trace=trace, model=model)
self.trace = trace
self.data = data