本文整理汇总了Python中pymc.Normal方法的典型用法代码示例。如果您正苦于以下问题:Python pymc.Normal方法的具体用法?Python pymc.Normal怎么用?Python pymc.Normal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymc
的用法示例。
在下文中一共展示了pymc.Normal方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: LogNormalWrapper
# 需要导入模块: import pymc [as 别名]
# 或者: from pymc import Normal [as 别名]
def LogNormalWrapper(name, mean, stddev):
"""
Create a PyMC Normal stochastic, automatically converting parameters to be appropriate for a `LogNormal` distribution.
Note that the resulting distribution is Normal, not LogNormal.
This is appropriate if we want to describe the log of a volume or a fluorescence reading.
Parameters
----------
mean : float
Mean of exp(X), where X is lognormal variate.
stddev : float
Standard deviation of exp(X), where X is lognormal variate.
Returns
-------
stochastic : pymc.Normal
Normal stochastic for random variable X
"""
# Compute parameters of lognormal distribution
mu = np.log(mean**2 / np.sqrt(stddev**2 + mean**2))
tau = np.sqrt(np.log(1.0 + (stddev/mean)**2))**(-2)
stochastic = pymc.Normal(name, mu=mu, tau=tau)
return stochastic
示例2: NormalWrapper
# 需要导入模块: import pymc [as 别名]
# 或者: from pymc import Normal [as 别名]
def NormalWrapper(name, mean, stddev, size=1, observed=False, value=None):
"""
Create a PyMC Normal stochastic, automatically converting parameters to be appropriate for a `Normal` distribution.
Notes
-----
Everything is coerced into a 1D array.
Parameters
----------
mean : float or array-like (but not pymc variable)
Mean of exp(X), where X is lognormal variate.
stddev : float or array-like (but not pymc variable)
Standard deviation of exp(X), where X is lognormal variate.
size : list of int, optional, default=1
Size vector
observed : bool, optional, default=False
If True, the stochastic is fixed to this observed value.
value : float, optional, default=None
If observed=True, the observed value of the real quantity
Returns
-------
stochastic : pymc.Normal
Normal stochastic for random variable X.
Name is prefixed with log_prefix
Deterministic encoding the exponentiated lognormal (real quantity)
"""
@pymc.deterministic(name=name + '_mu')
def mu(mean=mean, stddev=stddev):
mu = mean
return mu
@pymc.deterministic(name=name + '_tau')
def tau(mean=mean, stddev=stddev):
tau = stddev**(-2)
return tau
stochastic = pymc.Normal(name, mu=mu, tau=tau, size=size, observed=observed, value=value)
return stochastic
#=============================================================================================
# PyMC models
#=============================================================================================
示例3: run_mcmc
# 需要导入模块: import pymc [as 别名]
# 或者: from pymc import Normal [as 别名]
def run_mcmc(pymc_model, nthin=20, nburn=0, niter=20000, map=True, db='ram', dbname=None):
"""
Sample the model with pymc. Initial values of the parameters can be chosen with a maximum a posteriori estimate.
Parameters
----------
pymc_model : pymc model
The pymc model to sample.
nthin: int
The number of MCMC steps that constitute 1 iteration.
nburn: int
The number of MCMC iterations during the burn-in.
niter: int
The number of production iterations.
map: bool
Whether to initialize the parameters before MCMC with the maximum a posteriori estimate.
db : str
How to store model, default = 'ram' means not storing it. To store model use storage = 'pickle'. If not,
supply the name of the database backend that will store the values of the stochastics and deterministics sampled
during the MCMC loop.
dbname : str
name for storage object, default = None. To store model use e.g. dbname = 'my_mcmc.pickle'
Returns
-------
mcmc : pymc.MCMC
The MCMC samples.
"""
# Find MAP:
if map == True:
pymc.MAP(pymc_model).fit()
# Sample the model with pymc
mcmc = pymc.MCMC(pymc_model, db=db, dbname=dbname, name='Sampler', verbose=True)
step_methods = 'AdaptiveMetropolis'
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'DeltaG'), proposal_sd=0.1, proposal_distribution='Normal')
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_PL'), proposal_sd=0.1, proposal_distribution='Normal')
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_P'), proposal_sd=0.1, proposal_distribution='Normal')
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_L'), proposal_sd=0.1, proposal_distribution='Normal')
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_plate'), proposal_sd=0.1, proposal_distribution='Normal')
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_buffer'), proposal_sd=0.1, proposal_distribution='Normal')
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_buffer_control'), proposal_sd=0.1, proposal_distribution='Normal')
if hasattr(pymc_model, 'epsilon_ex'):
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'epsilon_ex'), proposal_sd=10000.0, proposal_distribution='Normal')
if hasattr(pymc_model, 'epsilon_em'):
mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'epsilon_em'), proposal_sd=10000.0, proposal_distribution='Normal')
# Uncomment below to use log_F_PL highly correlated with DeltaG to improve sampling somewhat.
#mcmc.use_step_method(pymc.AdaptiveMetropolis, [pymc_model.log_F_PL, pymc_model.DeltaG], scales={ pymc_model.log_F_PL : 0.1, pymc_model.DeltaG : 0.1 })
mcmc.sample(iter=(nburn+niter), burn=nburn, thin=nthin, progress_bar=False, tune_throughout=True)
return mcmc
示例4: _create_competitive_binding_model
# 需要导入模块: import pymc [as 别名]
# 或者: from pymc import Normal [as 别名]
def _create_competitive_binding_model(self, receptor_name, DeltaG_prior):
"""
Create the binding free energy priors, binding reaction models, and list of all species whose concentrations will be tracked.
Populates the following fields:
* parameter_names['DeltaGs'] : parameters associated with DeltaG priors
* reactions : reactions for GeneralBindingModel with DeltaG parameters substituted for free energies
formatted like [ ('DeltaG1', {'RL': -1, 'R' : +1, 'L' : +1}), ('DeltaG2', {'RP' : -1, 'R' : +1, 'P' : +1}) ]
* conservation_equations : conservation relationships for GeneralBindingModel with species names substituted with log concentrations
formatted like [ ('receptor', {'receptor' : +1, 'receptor:ligand' : +1}), ('ligand' : {'receptor:ligand' : +1, 'ligand' : +1}) ]
* complex_names : names of all complexes
* all_species : names of all species (ligands, receptor, complexes)
"""
self.parameter_names['binding affinities'] = list()
self.complex_names = list()
self.reactions = list() # reactions for GeneralBindingModel with pymc parameters substituted for free energies
self.conservation_equations = list() # list of conservation relationships for GeneralBindingModel with pymc parameters substituted for log concentrations
receptor_conservation_equation = { receptor_name : +1 } # Begin to populate receptor conservation equation
for ligand_name in self.ligand_names:
# Create complex name
complex_name = receptor_name + ':' + ligand_name
self.complex_names.append(complex_name)
# Create the DeltaG prior
name = 'DeltaG (%s + %s -> %s)' % (receptor_name, ligand_name, complex_name) # form the name of the pymc variable
if DeltaG_prior == 'uniform':
DeltaG = pymc.Uniform(name, lower=DG_min, upper=DG_max) # binding free energy (kT), uniform over huge range
elif DeltaG_prior == 'chembl':
DeltaG = pymc.Normal(name, mu=0, tau=1./(12.5**2)) # binding free energy (kT), using a Gaussian prior inspured by ChEMBL
else:
raise Exception("DeltaG_prior = '%s' unknown. Must be one of 'uniform' or 'chembl'." % DeltaG_prior)
self.model[name] = DeltaG
self.parameter_names['binding affinities'].append(name)
# Create the reaction for GeneralBindingModel
self.reactions.append( (DeltaG, {complex_name : -1, receptor_name : +1, ligand_name : +1}) )
# Create the conservation equation for GeneralBindingModel
self.conservation_equations.append( (ligand_name, {ligand_name : +1, complex_name : +1}) )
# Keep track of receptor conservation.
receptor_conservation_equation[complex_name] = +1
# Create the receptor conservation equation for GeneralBindingModel
self.conservation_equations.append( [receptor_name, receptor_conservation_equation] )
# Create a list of all species that may be present in assay plate
self.all_species = [self.receptor_name] + self.ligand_names + self.complex_names